165
Views
7
CrossRef citations to date
0
Altmetric
Articles

Schisandrin B attenuates bleomycin-induced pulmonary fibrosis in mice through the wingless/integrase-1 signaling pathway

, , , , , , , , , & show all
Pages 185-194 | Received 06 Jul 2019, Accepted 22 Apr 2020, Published online: 02 May 2020

References

  • Chioma OS, Drake WP. Role of microbial agents in pulmonary fibrosis. Yale J Biol Med. 2017; 90(2):219–227.
  • Kim DS. Acute exacerbations in patients with idiopathic pulmonary fibrosis. Respir Res. 2013;14(1):86–86. doi:10.1186/1465-9921-14-86.
  • Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003. doi:10.1056/NEJMra0806188.
  • He C, Ryan AJ, Murthy S, Carter AB. Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages. J Biol Chem. 2013;288(28):20745–20757. doi:10.1074/jbc.M112.410720.
  • Sakai N N, Andrew M, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta. 2013;1832(7):911–921. doi:10.1016/j.bbadis.2013.03.001.
  • Dees C, Distler JH. Canonical Wnt signaling as a key-regulator of fibrogenesis — implications for targeted therapies? Exp Dermatol. 2013;22(11):710–771. doi:10.1111/exd.12255.
  • Antoniou KM, Margaritopoulos GA, Siafakas NM. Pharmacological treatment of idiopathic pulmonary fibrosis: From the past to the future. Eur. Respir. Rev. 2013;22(129):281–291. doi:10.1183/09059180.00002113.
  • Desai O, Winkler J, Minasyan M, Herzog EL. The Role of immune and inflammatory Cells in idiopathic Pulmonary Fibrosis. the journalFrontiers. Front Med. 2018; 5:1–14. doi:10.3389/fmed.2018.00043.
  • Lam AP, Herazo-Maya JD, Sennello JA, et al. Wnt coreceptor Lrp5 is a driver of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190(2):185–195. doi:10.1164/rccm.201401-0079OC.
  • Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L152–L60. doi:10.1152/ajplung.00313.2007.
  • Chen N, Chiu PY, Ko KM. Schisandrin B enhances cerebral mitochondrial antioxidant status and structural integrity, and protects against cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull. 2008;31(7):1387–1391. doi:10.1248/bpb.31.1387.
  • Thandavarayan RA, Giridharan VV, Arumugam S, et al. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One. 2015;10(3):e0119214. doi:10.1371/journal.pone.0119214.
  • Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. Targeted therapy for idiopathic pulmonary fibrosis: where to now? Drugs. 2016;76(3):291–300. doi:10.1007/s40265-015-0523-6.
  • Chilosi M, Poletti V, Zamò A, et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. American J Pathol. 2003;162(5):1495–1502. doi:10.1016/S0002-9440(10)64282-4.
  • Arrieta O, Gallardo-Rincon D, Villarreal-Garza C, et al. High frequency of radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent radiotherapy and gemcitabine after induction with gemcitabine and carboplatin. J Thorac Oncol. 2009;4(7):845–852. doi:10.1097/JTO.0b013e3181a97e17.
  • Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015;6:565–577. doi:10.1016/j.redox.2015.09.009.
  • King CS, Nathan SD. Idiopathic pulmonary fibrosis: effects and optimal management of comorbidities. Lancet Respir Med. 2017;5(1):72–84. doi:10.1016/S2213-2600(16)30222-3.
  • Yan Z, Kui Z, Ping Z. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun Rev. 2014;13(10):1020–1025. doi:10.1016/j.autrev.2014.08.028.
  • Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003;167(12):1600–1619. doi:10.1164/rccm.200212-1479SO.
  • Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012;9(3):111–116. doi:10.1513/pats.201203-023AW.
  • Samarakoon R, Overstreet JM, Higgins PJ. TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal. 2013;25(1):264–268. doi:10.1016/j.cellsig.2012.10.003.
  • Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811. doi:10.1038/nrd3810.
  • Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic al Biol Med. 2010;48(1):1–15. doi:10.1016/j.freeradbiomed.2009.09.026.
  • Sun Q, Guo S, Wang CC, et al. Cross-talk between TGF-β/Smad pathway and Wnt/β-catenin pathway in pathological scar formation. Int J Clin Ical and Exp Pathol. 2015;8(6):7631–7639.
  • Hasaneen NA, Cao J, Pulkoski-Gross A, Zucker S, Foda HD. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts. Respir Res. 2016;17(1):17. doi:10.1186/s12931-016-0334-7.
  • Liu L, Carron B, Yee HT, Yie T-A, Hajjou M, Rom W. Wnt pathway in pulmonary fibrosis in the bleomycin mouse model. J Environ Pathol Toxicol Oncol. 2009; 28(2):99–108. doi:10.1615/JEnvironPatholToxicolOncol.v28.i2.20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.