155
Views
2
CrossRef citations to date
0
Altmetric
Articles

Aerosol inhalation of Mycobacterium vaccae ameliorates airway structural remodeling in chronic asthma mouse model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 239-250 | Received 23 Apr 2022, Accepted 16 Aug 2022, Published online: 24 Aug 2022

References

  • Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–646. doi:10.1038/s41423-019-0300-7.
  • Lin J, Wang W, Chen P, et al. Prevalence and risk factors of asthma in mainland China: The CARE study. Respir Med. 2018;137:48–54. doi:10.1016/j.rmed.2018.02.010.
  • Aheto JMK, Udofia EA, Kallson E, et al. Prevalence, socio-demographic and environmental determinants of asthma in 4621 Ghanaian adults: Evidence from Wave 2 of the World Health Organization’s study on global AGEing and adult health. PLoS One. 2020;15(12):e0243642. doi:10.1371/journal.pone.0243642.
  • Barrios J, Ai X. Neurotrophins in asthma. Curr Allergy Asthma Rep. 2018;18(2):10. doi:10.1007/s11882-018-0765-y.
  • Bush A. Pathophysiological mechanisms of asthma. Front Pediatr. 2019;7:68. doi:10.3389/fped.2019.00068.
  • Ge Y, Cheng R, Sun S, et al. Fangxiao formula alleviates airway inflammation and remodeling in rats with asthma via suppression of transforming growth factor-β/Smad3 signaling pathway. Biomed Pharmacother. 2019;119:109429. doi:10.1016/j.biopha.2019.109429.
  • Huang C, Zhang Z, Wang L, Liu J, Gong X, Zhang C. ML-7 attenuates airway inflammation and remodeling via inhibiting the secretion of Th2 cytokines in mice model of asthma. Mol Med Rep. 2018;17(5):6293–6300. doi:10.3892/mmr.2018.8683.
  • Jude J, Botelho D, Karmacharya N, Cao GY, Jester W, Panettieri RAJr. Salicylic acid amplifies carbachol-induced bronchoconstriction in human precision-cut lung slices. Respir Res. 2019;20(1):72. doi:10.1186/s12931-019-1034-x.
  • Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. doi:10.1242/dev.146589.
  • Gong WP, Liang Y, Ling YB, et al. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: Protective action and differentially expressed genes. Mil Med Res. 2020;7(1):25. doi:10.1186/s40779-020-00258-4.
  • Xiao H, Zhang QN, Sun QX, Li LD, Xu SY, Li CQ. Effects of Mycobacterium vaccae aerosol inhalation on airway inflammation in asthma mouse model. J Aerosol Med Pulm Drug Deliv. 2021;34(6):374–382. doi:10.1089/jamp.2021.0008.
  • Smit JJ, Van Loveren H, Hoekstra MO, Schijf MA, Folkerts G, Nijkamp FP. Mycobacterium vaccae administration during allergen sensitization or challenge suppresses asthmatic features. Clin Exp Allergy. 2003;33(8):1083–1089. doi:10.1046/j.1365-2222. 2003.01727.x.
  • Nader MA. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma. Int Immunopharmacol. 2015;29(2):761–769. doi:10.1016/j.intimp.2015.08.043.
  • Shen QY, Wu L, Wei CS, Zhou YN, Wu HM. Sevoflurane prevents airway remodeling via downregulation of VEGF and TGF-β1 in mice with OVA-induced chronic airway inflammation. Inflammation. 2019;42(3):1015–1022. doi:10.1007/s10753-019-00963-w.
  • Wang Z, Li L, Wang C, et al. Recombinant pyrin domain protein attenuates airway inflammation and alleviates epithelial-mesenchymal transition by inhibiting crosstalk between TGFβ1 and Notch1 signaling in chronic asthmatic mice. Front Physiol. 2020;11:559470. doi:10.3389/fphys.2020.559470.
  • Leung JM, Sin DD. Asthma-COPD overlap syndrome: Pathogenesis, clinical features, and therapeutic targets. BMJ. 2017;358:j3772. doi:10.1136/bmj.j3772.
  • Ji P, Hu H, Yang X, et al. AcCystatin, an immunoregulatory molecule from Angiostrongylus cantonensis, ameliorates the asthmatic response in an aluminium hydroxide/ovalbumin-induced rat model of asthma. Parasitol Res. 2015;114(2):613–624. doi:10.1007/s00436-014-4223-z.
  • Le Floc’h A, Allinne J, Nagashima K, et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy. 2020;75(5):1188–1204. doi:10.1111/all.14151.
  • Wang Z, Yao N, Fu X, et al. Butylphthalide ameliorates airway inflammation and mucus hypersecretion via NF-κB in a murine asthma model. Int Immunopharmacol. 2019;76:105873. doi:10.1016/j.intimp.2019.105873.
  • Ghebre MA, Pang PH, Desai D, et al. Severe exacerbations in moderate-to-severe asthmatics are associated with increased pro-inflammatory and type 1 mediators in sputum and serum. BMC Pulm Med. 2019;19(1):144. doi:10.1186/s12890-019-0906-7.
  • Mahmutovic Persson I, Menzel M, Ramu S, Cerps S, Akbarshahi H, Uller L. IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation. Respir Res. 2018;19(1):16. doi:10.1186/s12931-018-0725-z.
  • Saglani S, Lloyd CM. Novel concepts in airway inflammation and remodelling in asthma. Eur Respir J. 2015;46(6):1796–1804. doi:10.1183/13993003.01196-2014.
  • Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: What really matters. Cell Tissue Res. 2017;367(3):551–569. doi:10.1007/s00441-016-2566-8.
  • Ray A, Raundhal M, Oriss TB, Ray P, Wenzel SE. Current concepts of severe asthma. J Clin Invest. 2016;126(7):2394–2403. doi:10.1172/jci84144.
  • Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(12):3226–3242. doi:10.1016/j.bbadis.2017.08.031.
  • Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–999. doi:10.1016/j.cell.2017.05.016.
  • Huo R, Tian X, Chang Q, et al. Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β(1). Ther Adv Respir Dis. 2021;15:1753466620981858. doi:10.1177/1753466620981858.
  • Yao L, Zhao H, Tang H, et al. Blockade of β-catenin signaling attenuates toluene diisocyanate-induced experimental asthma. Allergy. 2017;72(4):579–589. doi:10.1111/all.13045.
  • Sharma S, Tantisira K, Carey V, et al. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. Am J Respir Crit Care Med. 2010;181(4):328–336. doi:10.1164/rccm.200907-1009OC.
  • Yang M, Zhao X, Liu Y, Tian Y, Ran X, Jiang Y. A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. Int Immunopharmacol. 2013;17(2):350–357. doi:10.1016/j.intimp.2013.06.011.
  • Yang M, Du Y, Xu Z, Jiang Y. Functional effects of WNT1-inducible signaling pathway protein-1 on bronchial smooth muscle cell migration and proliferation in OVA-induced airway remodeling. Inflammation. 2016;39(1):16–29. doi:10.1007/s10753-015-0218-x.
  • Song J, Zhu XM, Wei QY. MSCs reduce airway remodeling in the lungs of asthmatic rats through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(21):11199–11211. doi:10.26355/eurrev_202011_23608.
  • Martin AR, Finlay WH. Nebulizers for drug delivery to the lungs. Expert Opin Drug Deliv. 2015;12(6):889–900. doi:10.1517/17425247.2015.995087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.