277
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

DIFFERENTIAL CAPACITY OF WHEAT CULTIVARS AND WHITE LUPIN TO ACQUIRE PHOSPHORUS FROM ROCK PHOSPHATE, PHYTATE AND SOLUBLE PHOSPHORUS SOURCES

, , &
Pages 1180-1191 | Received 17 Feb 2010, Accepted 30 Apr 2010, Published online: 15 May 2012

REFERENCES

  • Barber , S. A. 1995 . Soil Nutrient Bioavailability: A Mechanistic Approach , New York : John Wiley & Sons .
  • Bates , T. and Lynch , J. P. 2001 . Root hairs confer a competitive advantage under low phosphorus availability . Plant and Soil , 236 : 243 – 250 .
  • Batjes , N. H. 1997 . A world data set of derived soil properties by FAO/UNESCO soil unit for global modeling . Soil Use and Management , 13 : 9 – 16 .
  • Braum , S. M. and Helmke , P. A. 1995 . White lupin utilizes soil phosphorus that is unavailable to soybean . Plant and Soil , 176 : 95 – 100 .
  • Cakmak , I. 2002 . Plant nutrition research: Priorities to meet human needs for food in sustainable ways . Plant and Soil , 247 : 3 – 24 .
  • Cawthray , G. R. 2003 . An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates . Journal of Chromatography A , 1011 : 233 – 240 .
  • Chien , S. H. and Menon , R. G. 1995 . Factors affecting the agronomic effectiveness of phosphate rock for direct application . Fertilizer Research , 41 : 227 – 234 .
  • Egle , K. , Römer , W. and Keller , H. 2003 . Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply . Agronomie , 23 : 511 – 518 .
  • Fardeau , J. C. and Zapata , F. 2002 . Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique . Nutrient Cycling in Agroecosystems , 63 : 69 – 79 .
  • George , T. S. , Gregory , P. J. , Wood , M. , Read , D. and Buresh , R. J. 2002 . Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize . Soil Biology and Biochemistry , 34 : 487 – 1494 .
  • Gerloff , S. 1978 . “ Plant efficiencies in the use of N, P and K ” . In Plant Adaptation to Mineral Stress in Problem Soils , Edited by: Wright , M. J. 161 – 174 . Ithaca, NY : Cornell University Press .
  • Goenadi , D. H. , Siswanto and Sugiarto , Y. 2000 . Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus . Soil Science Society of America Journal , 64 : 927 – 932 .
  • Gunes , A. , Inal , A. , Alpasalan , M and Cakmac , I. 2006 . Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions . Soil Science and Plant Nutrition , 52 : 470 – 478 .
  • Gupta , N. , Sabat , J. , Parida , R. and Kerkatta , D. 2007 . Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines . Acta Botanica Croatica , 66 : 197 – 204 .
  • Igual , J. M. , Valverde , A. , Cervantes , E. and Velázquez , E. 2001 . Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study . Agronomie , 21 : 561 – 568 .
  • Jayasinghearachi , H. S. and Seneviratne , G. 2006 . Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms . Soil Biology and Biochemistry , 38 : 405 – 408 .
  • Kpomblekou , K. and Tabatabai , M. A. 1994 . Effect of organic acids on release of phosphorus from phosphate rocks . Soil Science , 158 : 442 – 453 .
  • Lambers , H. , Shane , M. W. , Cramer , M. D. , Pearse , S. J. and Veneklaas , E. J. 2006 . Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits . Annals of Botany , 98 : 693 – 713 .
  • Liao , M. , Hocking , P. J. , Dong , B. , Delhaize , E. , Richardson , A. E. and Ryan , P. R. 2008 . Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils . Australian Journal of Agricultural Research , 59 : 157 – 166 .
  • Lynch , J. 1998 . “ The role of nutrient-efficient crops in modern agriculture ” . In Nutrient Use in Crop Production , Edited by: Rengel , Z. 241 – 264 . New York : The Haworth Press .
  • Marschner , H. 1995 . Mineral Nutrition of Higher Plants , London : Academic Press .
  • Monasterio , O. J. , Manske , G. B. and Ginkel , M. V. 2001 . “ Nitrogen and P use efficiency ” . In Application of Physiology in Wheat Breeding , Edited by: Reynolds , M. P. , Monasterio , O. J. and McNab , A. 200 – 207 . Mexico City : CIMMYT .
  • Nahas , E. 1996 . Factors determining rock phosphate solubilization by microorganisms isolated from soil . World Journal of Microbiology and Biotechnology , 12 : 567 – 572 .
  • Neumann , G. , Massonneau , A. , Martinoia , E. and Römheld , V. 1999 . Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin . Planta , 208 : 373 – 382 .
  • Neumann , G. and Römheld , V. 1999 . Root excretion of carboxylic acids and protons in phosphorus-deficient plants . Plant and Soil , 211 : 121 – 130 .
  • Osborne , L. D. and Rengel , Z. 2002 . Growth and P uptake by wheat genotypes supplied with phytate as the only P source . Australian Journal of Agricultural Research , 53 : 845 – 850 .
  • Pradhan , N. and Sukla , L. B. 2005 . Solubilization of inorganic phosphates by fungi isolated from agriculture soil . African Journal of Biotechnology , 5 : 850 – 854 .
  • Raghothama , K. G. 1999 . Phosphate acquisition . Annual Review of Plant Physiology and Plant Molecular Biology , 50 : 665 – 693 .
  • Rengel , Z. 1999 . “ Physiological mechanisms underlying differential nutrient efficiency of crop genotypes ” . In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications , Edited by: Rengel , Z. 227 – 265 . New York : Haworth Press .
  • Rodriguez , H. and Fraga , R. 1999 . Phosphate solubilizing bacteria and their role in plant growth promotion . Biotechnology Advances , 17 : 319 – 339 .
  • Saghir-Khan , M. , Zaidi , A. and Wani , P. A. 2007 . Role of phosphate-solubilizing microorganisms in sustainable agriculture - A review . Agronomy for Sustainable Development , 27 : 29 – 43 .
  • Shane , M. W. , Lambers , H. , Cawthray , G. R. , Kuhn , A. J. and Schurr , U. 2008 . Impact of P mineral source and pH on cluster-root formation and carboxylate exudation in Lupinus albus L . Plant and Soil , 304 : 169 – 178 .
  • Shen , J. , Rengel , Z. , Tang , C. and Zhang , F. 2003 . Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus . Plant and Soil , 248 : 199 – 206 .
  • Shu , L. , Shen , J. , Rengel , Z. , Tang , C. , Zhang , F. and Cawthray , G. 2007 . Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources . Plant Science , 172 : 1017 – 1024 .
  • Supanjani , H. S. H. , Jung , J. S. and Lee , K. D. 2006 . Rock phosphate-potassium and rock-solubilizing bacteria as alternative, sustainable fertilizers . Agronomy for Sustainable Development , 26 : 233 – 240 .
  • Szmigielska , A. , Van Rees , K C. J. , Cieslinski , G. and Huang , P. M. 1996 . Low molecular weight dicarboxylic acids in the rhizosphere soil of durum wheat . Journal of Agricultural and Food Chemistry , 44 : 1036 – 1040 .
  • Vance , C. P. , Uhde-Stone , C. and Allan , D. L. 2003 . Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource . New Phytologist , 157 : 423 – 447 .
  • Vassilev , N. and Vassileva , M. 2003 . Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes . Applied Microbiology and Biotechnology , 61 : 435 – 440 .
  • Vassilev , N. , Vassileva , M. , Fenice , M. and Federici , F. 2001 . Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition . Bioresource Technology , 79 : 263 – 271 .
  • Wang , X. , Tang , C. , Guppy , C. N. and Sale , P. G. 2008 . Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions . Plant and Soil , 312 : 117 – 128 .
  • Watt , M. and Evans , J. R. 2003 . Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development . Plant and Soil , 248 : 271 – 283 .
  • Whitelaw , M. A. 2000 . Growth promotion of plants inoculated with phosphate-solubilizing fungi . Advances in Agronomy , 69 : 99 – 151 .
  • Yan , X. , Liao , H. , Beebe , S. , Blair , M. and Lynch , J. P. 2004 . QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean . Plant and Soil , 265 : 17 – 29 .
  • Zhu , Y. G. and Smith , S. E. 2001 . Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi . Plant and Soil , 231 : 105 – 112 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.