429
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Inoculation with Phosphate Solubilizing Mesorhizobium Strains Improves the Performance of Chickpea (Cicer aritenium L.) Under Phosphorus Deficiency

, , , , , & show all
Pages 1656-1671 | Received 06 May 2012, Accepted 04 Feb 2015, Published online: 14 Sep 2015

REFERENCES

  • Abdi, N., A. Bargaz, M. Bouraoui, L. Boulbaba, C. Ghoulam, and B. Sifi. 2012. Symbiotic responses to insoluble phosphorus supply in common bean (Phaseolus vulgaris L.)-Rhizobia symbiosis. African Journal of Biotechnology 19: 4360–4367.
  • Antoun, H., C.J. Beauchamp, N. Goussard, R. Chabot, and R. Lalande. 1998. Potential of Rhizobium and Bradyrhizobium species as growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant and Soil 204: 57–67.
  • Banik, S., S.K. Bhattacharya and S.N. Pandey. 1989. Rock phosphate as substitute for single super phosphate in tossa jute (Corchorus olitorius) cultivation. Indian Journal of Agricultural Science 59: 676–679.
  • Chabot, R., H. Antoun, and M.P. Cescas 1996. Growth promotion of maizeand lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant and Soil 184: 311–321.
  • Chabot, R., C.J. Beauchamp, J.W. Kloepper, and H. Antoun. 1998. Effect of phosphorous on root colonization and growth promotion of maize by bioluminiscent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar.phaseoli. Soil Biology and Biochemestry 30: 1615–1618.
  • Chen, Y.P., P.D. Rekha, A.B. Arunshen, W.A. Lai, and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34:33–41
  • Dubey, S.K. 1996. Response of soybean to rock phosphate applied with Pseudomonas striata in a typic chromustert. Journal of Indian Society and Soil Science 44: 252–255.
  • De Freitas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorous uptake in canola (Brassica napus L.). Biology and Fertility Soils 24: 358–364.
  • Duff, S.M. G., G. Sarath, and W.C. Plaxton.1994. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum 90: 791–800.
  • Duponnois, R., M. Kisa, and C. Plenchette. 2006. Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. Journal of Plant Nutrition and Soil Science 169: 280–282.
  • Emmimath, V.S. 1990. Requirement of phosphate fertilizers for bengal gram inoculated with Rhizobium. In: Proceeding of VIII Southern Regional Conference on Microbial Inoculants, eds. B. S. Rao, S. V. Ranade, J. M. Gadgil, S. D. Khambe, and B. P. Patil, pp. 31–33. Pune: Maharashtra.
  • Fleury P., and M. Leclerc. 1943. La méthode nitro-vanadomolybdique de Misson pour le dosage colorimétrique du phosphore. Son intérêt en Biochimie [The nitro-vanadomolybdic method of Mission for the colorimetric determination of phosphorus. Its interest in biochemistry]. Bulletin de la Société de Chimie Biologique; 25: 201–205.
  • Goldstein, A.H. 1994. Involvement of the quinoprotein glucose dehydrogenises in the solubilization of exogenous phosphates by gram-negative bacteria. In: Phosphate in Microorganisms: Cellular and Molecular Biology, eds. A. Torriani Gorini, E. Yagil, and S. Silver, pp. 197–203. Washington, DC: ASM Press.
  • Goldstein, A.H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilisation by Gram-negative bacteria. Biological Agricultural and Horticulture 12: 185–193.
  • Gyaneshwar, P., G.N. Kumar, L.J. Parekh, and P.S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245: 83–93.
  • Halder, A.K., A.K. Mishra, P. Bhattacharya, and P.K. Chakrabarthy. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology 36: 81–92.
  • Hao, X., C.M. Cho, G.J. Racz, and C. Chang. 2002. Chemical retardation of phosphate diffusion in an acid soil as affected by liming. Nutrient Cycling in Agro-Ecosystems 64: 213–224.
  • He, Z.L., W. Bian, and J. Zhu. 2002. Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Communications in Soil Science and Plant Analysis 33: 647–663.
  • Hilda, R., T. Gonzalez, and G. Selman. 2000. Expression of a mineral phosphate solubilizing gene from Erwina herbicola in two rhizobacterial strains. Journal of Biotechnology 84: 155–161.
  • Hwangbo, H., R.D. Park, Y.W. Kim, Y.S. Rim, K.H. Park, T.H. Kim, J.S. Suh, and K.Y. Kim. 2003. 2-Ketogluconic production and phosphate solubilization by Enterobacter intermedium. Current Microbiology 47: 87–92.
  • Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly-soluble AlPO4 with P solubilizing microorganism. Soil Biology and Biochemestry 27: 265–270.
  • Isherword, K.F. 1998. Fertilizer use and environment. In: Proc. Symp. Plant Nutrition Management for Sustainable Agricultural Growth, eds. N. Ahmed and A. Hamid, pp. 57–76. Islamabad: NFDC.
  • Jilani, G., A. Akram, R.M. Ali, F.Y. Hafeez, I.H. Shamsi, A.N. Chaudhry, and A.G. Chaudhry. 2007. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Annual Review of Microbiology 57: 177–183.
  • Kang, S.C., C.G. Hat, T.G. Lee and D.K. Maheshwari. 2002. Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Current Science 82: 439–442.
  • Kaous, S., N. Alkama, C. Abdelly, and J.J. Drevon. 2008. Proton release by nodulated roots varies among common bean genotypes (Phaseolus vulgaris) under phosphorus drficiency. Journal of Plant Nutrition and Soil Science 171: 242–248.
  • Kaous, S., A. Dabes, T. Slatni, N. Labidi, J.J. Drevon and C. Abdelly. 2009. Root proliferation, proton efflux, and acid phosphatase activity in common bean (Phaseolus vulgaris) under phosphorus shortage. Journal of Plant Biology 52: 395–402.
  • Khan, M.S., A. Zaidi, and M. Amil. 1997. Associative effect of Bradyrhizobium sp. (vigna) and phosphate solubilizing bacteria on mungbean [Vigna radiata (L.) Wilczek]. Journal of Biology 9: 101–106.
  • Kim, K.Y., D. Jordan, and G.A. McDonald. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: Effect of carbon sources. Soil Biology and Biochemestry 30: 995–1003.
  • Kpomblekou, K., and M.A. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science 158: 442–453.
  • Kucey, R.M. N., H.H. Janzen, and M.E. Legget. 1989. Microbial mediated increases in plant available phosphorus. Advances in Agronomy 42: 199–228.
  • Li, S.M., L. Li, F.S. Zhang and C. Tang. 2004. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany 94: 297–303.
  • Li, Y., A. Luo, X. Wei, and X. Yao. 2008. Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes. Pedosphere18: 785–794.
  • Ma, X., E. Wright, Y. Ge, J. Bell, Y. Xi, J.H. Bouton, and Z.Y. Wang 2009. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Science 176: 479–488.
  • Manjunatha, H., and L.S. Devi. 1990. Effect of phosphate solubilizing bacteria on P availability to groundnut from rock phosphate. Current Research 19: 56–57.
  • Nanamori, M., T. Shinano, J. Wasaki, T. Yamamura, I.M. Rao, and M. Osaki. 2004. Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar mulato compared with rice. Plant Cell and Physiology. 45: 460–469.
  • Patil, R.N., and P.A. Shinde. 1980. Studies on nodulation pattern in gram (Cicer arietinum L.). Journal of Maharashtra Agricultural University 5: 211–213.
  • Peix, A., A.A. Rivas-Boyero, P.F. Mateos, C. Rodriguez-Barrueco, E. Martinez-Molina et E. Velazquez. 2001. Growth promotion of chickpea and barley by a phosphate solubilizingstrain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biology & Biochemistry 33: 103–110.
  • Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17: 362–373.
  • Pradhan, N., and L.B. Shukla. 2005. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5: 850–854.
  • Raghothama, K.G. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50: 665–693.
  • Richardson, A.E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28: 897–906.
  • Richardson, A.E., T.S. George, M. Hens, and R.J. Simpson. 2004. Utilisation of soil organic phosphorus by higher plants. In: Organic Phosphorus in the Environment, eds. B.L. Turner, E. Frossard, and D. Baldwin, pp. 165–184. Wallingford, UK: CABI.
  • Richardson, A.E., P.J. Hocking, R.J. Simpson, and T.S. George. 2009. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Science 60: 124–143.
  • Shekhar, N.C., S. Bhaclauriay, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182: 291–296.
  • Sudhakara, R.M., S. Kumar, K. Babita, and M.S. Reddy. 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technology 84: 187–189.
  • Tinker, P.B. 1980. Role of rhizosphere microorganisms in phosphorus uptake by plants. In: The Role of Phosphorus in Agriculture, eds. F.E. Khasawneh, E.C. Samples, and E.J. Kamprath, pp. 617–654. Madison, WI: American Society of Agronomy.
  • Vadez, V., F. Rodier, H. Payre, and J.J. Drevon. 1996. Nodule permeability to O2 and nitrogenase-linked respiration in bean genotypes varying in the tolerance of N2 fixation to P-deficiency. 34: 871–878.
  • Vance, C.P., C. Uhde-Stone, and D.L. Allan. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157: 423–447.
  • Vincent, J.M. 1970. A Manual for the Practical Study of Root-Nodule Bacteria. Oxford: Blackwell Scientific.
  • Viverk, K., and K.P. Singh. 2001. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology 76: 173–175.
  • Wasaki, J., T. Yamamura, T. Shinano, and M. Osaki. 2003. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil 248: 129–136.
  • Whitelaw, M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69: 99–151.
  • Xiao, K., H. Katagi, M. Harrison, and Z.Y. Wang. 2006. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Science 170: 191–202.
  • Yazdani M., M.A. Bahmanyar, H. Pirdashti and M.A. Esmaili. 2009. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proceeding of World Academy of Science, Engineering and Technology 37: 90–92.
  • Young, C.C. 1990. Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soils. Soil Science and Plant Nutrition 36: 225–231.
  • Young, C.C., T.C. Juanag, and H.Y. Guo. 1986. Vesicular-arbuscular mycorrhiza inoculation on soybean yield and mineral phosphorus utilization in subtropical-tropical soils. Plant and Soil 95: 245–254.
  • Zaman-Allah, M., B. Sifi, B. L’Taief, M.H. El Aouni, and J.J. Drevon. 2007. Symbiotic response to low phosphorus supply in two common bean (Phaseolus vulgaris L.) genotypes. Symbiosis 44: 109–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.