251
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effects of root addition and foliar application of nitric oxide and salicylic acid in alleviating iron deficiency induced chlorosis of peanut seedlings

, , , , &
Pages 63-81 | Received 13 Aug 2014, Accepted 08 May 2015, Published online: 29 Nov 2016

References

  • Ahmàd, P., G. Nabi, and M. Ashraf. 2006. Cadmium-induced oxidative damage in mustard (Brassica juncea (L.) Czern.& Coss.) plants can be alleviated by salicylic acid. South African. Journal of Botany 7: 36–44.
  • Arnaud, N., I. Murgia, J. Boucherez, J. F. Briat, F. Cellier, and F. Gaymard. 2006. An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. Journal of Biological Chemistry 33: 23579–23588.
  • Bacaicoa, E., M. Z. Ángel, L. Diane, and B. Roberto. 2009. relationship between the hormonal balance and the regulation of iron deficiency stress responses in cucumber. Journal of the American Society for Horticultural Science 134: 589–601.
  • Briat, J. F., C. Duc, K. Ravet, and F. Gaymard. 2010. Ferritins and iron storage in plants. Biochimica et Biophysica Acta 1800: 806–814.
  • Briskin, D. P., R. T. Leonard, and T. K. Hodges. 1987. Isolation of the plasma membrane: markers and general principles. Methods in Enzymology 148: 542–558.
  • Chen, W. W., J. L. Yang, C. Qin, C. W. Jin, J. H. Mo, T. Ye, and S. J. Zheng. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in responses to iron deficiency in Arabidopsis. Plant Physiology 154: 810–819.
  • Connolly, E. L., N. Campbell, N. Grotz, C. L. Prichard, and M. L. Guerinot. 2003. Overexpression of the FRO2 Ferric Chelate reductase confers tolerance to growth on low iron and uncovers post-transcriptional control. Plant Physiololgy 133: 1102–1110.
  • Ding, H., L. H. Duan, J. Li, H. Yan, M. Zhao, F. S. Zhang, and W. X. Li. 2010. Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize. Journal of Plant Physiology 167: 996–1002.
  • Ding, F., X. F. Wang, Q. H. Shi, M. L. Wang, F. J. Yang, and Q. H. Gao. 2008. Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.). Agricultural Sciences in China 7: 168–179.
  • Eichert, T., J. J. Peguero-Pina, E. Gil-Pelegrín, A. Heredia, and V. Fernández. 2010. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica). Plant Physiologly 138: 48–59.
  • Eide, D., M. Broderius, J. Fett, and M. L. Guerinot. 1996. A novel iron–regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America 93: 5624–5628.
  • Fernández, V., R. V. Del, L. Pumariño, E. Igartua, J. Abadía, and A. Abadía. 2008. Foliar fertilization of peach (Prunus persica (L) Batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Scientia Horticulturae 117: 241–248.
  • Gao, L., and Y. X. Shi. 2007. Genetic differences in resistance to iron deficiency chlorosis in peanut. Journal of Plant Nutrition 30: 37–52.
  • Gévaudant, F., D. Geoffrey, E. V. Stedingk, R. M. Zhao, P. Morsomme, and M. Boutry. 2007. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiology 144: 1763–1776.
  • González-Vallejo, E. B., F. Morales, L. Cistué, A. Abadía, and J. Abadía. 2000. Iron deficiency decreases the Fe (III)-chelate reducing activity of leaf protoplasts. Plant Physiology 122: 337–344.
  • Graziano, M., M. V. Beligni, and L. Lamattina. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiology 130: 1852–1859.
  • Graziano, M., and L. Lamattina. 2005. Nitric oxide and iron in plants: an emerging and converging story. Trends in Plant Science 10: 4–8.
  • Graziano, M., and L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal 52: 949–960.
  • Gunes, A., A. Inal, M. Alpaslan, F. Eraslan, E. G. Bagci, and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164: 728–736.
  • Guo, X. T., H. Y., Xiong, W. Shen, C. Q. Qiu, Z. Ji, J. Zhang, and Y. M. Zuo. 2014. Dynamics in the rhizosphere and iron–uptake gene expression in peanut induced by intercropping with maize: Role in improving iron nutrition in peanut. Plant Physiology and Biochemistry 76C: 36–43.
  • Hakan, C. A., and K. Vahap. 2007. Some parameters in relation to iron nutrition status of peach orchards. Journal of Environmental Biology 1: 111–115.
  • Han, Z. H., C. Q. Han, X. F. Xu, and Q. Wang. 2005. Relationship between iron deficiency stress and endogenous hormones in iron efficient versus inefficient apple genotypes. Journal of Plant Nutrition 28: 1887–1895.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysic 125: 189–198.
  • Hell, R., and U. W. Stephan. 2003. Iron uptake, trafficking and homeostasis in plants. Planta 216: 541–51.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water culture method for growing plants without soil. Circular. California Agricultural Experiment Station Circular 347: 29–32.
  • Horvath, E., S. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26: 290–300.
  • Ishimaru, Y., S. A. Kim, T. Tsukamoto, H. Oki, T. Kobayashi, S. Watanabe, S. Matsuhashi, M. Takahashi, H. Nakanishi, S. Mori, and N. K. Nishizawa. 2007. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proceedings of the National Academy of Sciences of the USA 104: 7373–7378.
  • Janda, T., G. Szalai, I. Tari, and E. Paldi. 1999. Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208: 175–180.
  • Jin, C. W., G. Y. You, Y. F. He, C. X. Tang, P. Wu, and S. J. Zheng. 2007. Iron deficiency–induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiology 144: 278–285.
  • Kanai, M., M. Hirai, M. Yoshiba, T. Tadano, and K. Higuchi. 2009. Iron deficiency causes zinc excess in Zea mays. Soil Science and Plant Nutrition 55: 271–276.
  • Kang, H. M., and M. E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Plant Physiology 115: 571–576.
  • Kazemi, N., R. A. Khavari-Nejad, H. Fahimi, S. Saadatmand, T. Nejad-Sattari. 2010. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Scientia Horticulturae 126: 402–407.
  • Khodary, S. E. A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture and Biology 6: 1–4.
  • Knudson, L. L., T. W. Tibbitts, and G. E. Edwards. 1977. Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiology 60: 606–608.
  • Kong, J., Y. J. Dong, L. L. Xu, S. Liu, and X. Y. Bai. 2013. Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil. Journal of Plant Interactions 9: 450–459.
  • Kong, J., Y. J. Dong, L. L. Xu, S. Liu, and X. Y. Bai. 2014a. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Botanical Studies 55: 9–20.
  • Kong, J., Y. J. Dong, L. L. Xu, S. Liu, and X. Y. Bai. 2014b. Effects of exogenous salicylic acid on alleviating chlorosis induced by iron deficiency in peanut seedlings (Arachis hypogaea L). Journal of Plant Growth Regulation 33: 715–729.
  • Lamattina, L., C. Garcia-Mata, M. Graziano, and G. Pagnussat. 2003. Nitric oxide: the versatility of an extensive signal molecule. Annual Review of Plant Physiology and Plant Molecular Biology 54: 109–136.
  • Larkindale, J., and M. R. Knight. 2002. Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology 128: 682–695.
  • Li, S. P., Y. B. Yuan, G. S. Liu, C. L. Liu, Y. Z. Wang, and P. H. Li. 2010. Relationship between salicylic acid and iron in their regulations of the growth of strawberry tissue culture plants. Scientia Agricultura Sinica 43: 2751–2758.
  • Li, C. J., X. P. Zhu, and F. S. Zhang. 2000. Role of shoot in regulation of iron deficiency responses in cucumber and bean plants. Journal of Plant Nutrition 23: 1809–1818.
  • Ma, Y. H., F. W. Ma, J. K. Zhang, M. Y. Li, Y. H. Wang, and D. Liang. 2008. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science 175: 761–766.
  • Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd edn. London: Academic Press, London.
  • Marschner, H., V. Róheld, and M. Kissel. 1987. Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiologia Plantarum 71: 157–162.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410.
  • Morales, F., R. Belkhodjia, A. Abadia, and J. Abadfa. 2006. Photosystem IIefficiency and mechanisms of energy dissipation in iron deficient, field-grown pear trees (Pyrus communis L.). Photosynthesis Research 63: 9–21.
  • Munne-Bosch, S., and J. Peñuelas. 2003. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217: 758–766.
  • Nickel, K. S., and B. A. Cunningham. 1969. Improved peroxidase assay method using leuco 2,3,6–trichloro indophenol and application to comparative measurements of peroxidase catalysis. Analytical Biochemistry 27: 292–299.
  • Ohinishi, T., R. S. Gall, and M. L. Mayer. 1975. An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. Analytical Biochemistry 69: 261–267.
  • Oki, H., S. Kim, H. Nakanishi, M. Takahashi, H. Yamaguchi, S. Mori, and N. K. Nishizawa. 2004. Directed evolution of yeast ferric reductase to produce plants with tolerance to iron deficiency in alkaline soils. Soil Science and Plant Nutrition 50: 1159–1165.
  • Palmgren, M. G., and J. F. Harper. 1999. Pumping with plant P-type ATPases. Journal of Experimental Botany 50: 883–893.
  • Patra, H. L., M. Kar, and D. Mishre. 1978. Catalase activity in leaves and cotyledons during plant development and senescence. Biochemical Pharmacology 172: 385–390.
  • Ranieri, A., A. Castagna, B. Baldan, and G. F. Soldatini. 2001. Iron deficiency differently affects peroxidase isoforms in sunflower. Journal of Experimental Botany 52: 25–35.
  • Robinson, N.J., C. M. Procter, E. L. Connolly, and M. L. Guerinot. 1999. A ferric-chelate reductase for iron uptake from soils. Nature 397: 694–697.
  • Santi, S., and W. Schmidt. 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist 183: 1072–1084.
  • Shakirova, F. M., A. R. Sakhbutdinova, M. V. Bezrukova, R. A. Fatkhutdinova, and D. R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science 164: 317–322.
  • Shen, H. Y., H. C. Xiong, X. T. Guo, and Y. M. Zuo. 2011. Progress of molecular mechanism of iron uptake and translocation in plants. Plant Nutrition and Fertilizer Science 17: 1522–1530.
  • Shenker, M., and Y. Chen. 2005. Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Science and Plant Nutrition 51: 1–17.
  • Shi, G. R., Q. S. Cai, Q. Q. Liu, and L.Wu. 2009. Salicylic acid–mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologiae Plantarum. 31: 969–977.
  • Shi, Q. H., and Z. J. Zhu. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany 63: 317–326.
  • Slaymaker, D. H., D. A. Navarre, D. Clark, O. del Pozo, G. B. Martin, and D. F. Klessig. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America 99: 11640–11645.
  • Stamler, J. S., D. J. Singel, and J. Loscalzo. 1992. Biochemistry of nitric oxide and its Redox-Activated forms. Science 258: 1898–1902.
  • Stewart, R. R., and J. D. Bewley. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65: 245–248.
  • Sun, B., Y. Jing, K. Chen, L. Song, F. Chen, and L. Zhang. 2007. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays L). Journal of Plant Physiology 164: 536–543.
  • Thoiron, S., N. Pascal, and J. F. Briat. 1997. Impact of iron deficiency and iron re–supply during the early stages of vegetative development in maize (Zea mays L.). Plant Cell and Environment 20: 1051–1060.
  • Thomine, S., F. Lelièvre, E. Debarbieux, J. I. Schroeder, and H. Barbier-Brygoo. 2003. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal 34: 685–695.
  • Vasconcelos, M., H. Eckert, V. Arahana, G. Graef, M. A. Grusak, and T. Clemente. 2006. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 224: 1116–1128.
  • Vicence, M. R. S., and J. Plasencia. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62: 3321–3338.
  • Wang, Q, H. X. Liang, Y. J. Dong, L. L. Xu, X. W. Zhang, J. Hou, and Z. Y. Fan. 2013. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation 69: 11–20.
  • Watts, R. N., and D. R. Richardson. 2002. The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a glutathione–dependent manner. European Journal of Biochemistry 269: 3383–3392.
  • Webb, A. A. R., M. R. McAinsh, J. E. Taylor, and A. M. Hetherington. 1996. Calcium ions as intracellular second messengers in higher plants. Advances in Botanical Research 22: 45–96.
  • Wild, J., D. Kley, A. Rockel, P. Rockel, and H. J. Segschneider. 1997. Emission of NO from several higher plant species. Journal of Geophysical Research Atmospheres 102: 5919–5928.
  • Winder, T. L., and J. N. Nishio. 1997. Early iron deficiency stress response in leaves of sugar beet. Plant Physiology 108: 1487–1494.
  • Wink, D. A., and J. B. Mitchell. 1998. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine 28: 434–456.
  • Xu, L. L., Y. J.Dong, J. Kong, S. Liu, Z. Y. Fan, J. Hou, and X. Y. Bai. 2013. Effects of exogenous NO supplied with different approaches on cadmium toxicity in lettuce seedlings. Plant Biosystems 149: 270–279.
  • Zhang, X. W., Y. J. Dong, X. K. Qiu, G. Q. Hu, Y. H. Wang, and Q. H. Wang. 2012. Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. Plant Soil and Environment 58: 111–120.
  • Zhang, X. W., M. Zhang, Q. H. Wang, X. K. Qiu, G. Q. Hu, and Y. J. Dong. 2013. Effect of exogenous nitric oxide on physiological characteristic of peanut under iron-deficient stress. Plant Nutrition and Fertilizer Science 17: 665–673.
  • Zuo, Y., L. Ren, F. Zhang, and R. F. Jiang. 2007. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil. Plant Physiology and Biochemistry 45: 23–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.