388
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effects of mycorrhiza inoculation on cucumber growth irrigated with saline water

, , &
Pages 128-137 | Received 01 Oct 2014, Accepted 19 Feb 2015, Published online: 15 Dec 2016

References

  • Abdel-Latef, A. H. A., and H. Chaoxing. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127: 228–233.
  • Ahmadi, A., and A. Siosemardeh. 2005. Investigation on the physiological basis of grain yield and drought resistance in wheat: leaf photosynthetic rate, SC, and non-stomatal limitations. International Journal of Agriculture and Biology 7: 807–811.
  • Al-Karaki, G. N., R. Hammad, and M. Rusan. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43–47.
  • Allen, M. F., T. S. Moore, and M. Christensen. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-Arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Canadian Journal of Botany 58: 371–374.
  • Augé, R. M. 2001. Water relations, drought and vesicular mycorrhizal fungi symbiosis. Mycorrhiza 11: 3–42.
  • Barker, S. J., and D. Tagu. 2000. The roles of auxins and cytokinins in mycorrhizal symbioses. Journal of Plant Growth Regulation 19: 144–154.
  • Bates, L., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205–207.
  • Borde, M., M. Dudhane, and P. Jite. 2011. Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glauca) crop under salinity stress condition. Crop Protection 30: 265–271.
  • Chen, S., W. Jin, A. Liu, S. Zhang, D. Liu, F. Wang, X. Lin, and Ch. He. 2013. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae 160: 222–229.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C. M. Rivera, and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils 44: 501–509.
  • Derbew, B. Y., A. N. Mokashi, C. P. Patil, and R. V. Hegde. 2007. Effect of mycorrhizal inoculation and different salinity levels on root colonization, growth and chlorophyll content of grape rootstocks (Vitis spp). Tropical Agricultural Research & Extension 10: 79–83.
  • Evelin, H., B. Giri, and R. Kapoor. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22: 203–217.
  • Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany 104: 1263–1280.
  • Feng, G., F. Zhang, X. Li, C. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190.
  • Ghoulam, C., A. Foursy, and K. Fares. 2002. Effect of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany 47: 39–50.
  • Giri, B., and K. G. Mukerji. 2004. Mycorrhizal inoculants alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14: 307–312.
  • Hajiboland, R., N. Aliasgharzadeh, S. Farshad Laiegh, and C. Poschenrieder. 2010. Colonization with Arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil 331: 313–327.
  • Hajlaoui, H., N. E. Ayeb, J. P. Garrec, and M. Denden. 2010. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products 31: 122–130.
  • Hasegawa, P. M., R. A. Bressan, J. K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51: 463–499.
  • Juniper, S., and L. K. Abbott. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of Arbuscular mycorrhizal fungi. Mycorrhiza 16: 371–379.
  • Kaya, C., M. Ashraf, O. Sonmez, S. Aydemir, A. L. Tuna, and M. A. Cullu. 2009. The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae 121: 1–6.
  • Kumar, A., S. Sharma, and S. Mishra. 2010. Influence of Arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation 29: 297–306.
  • Lutts, S., J. M. Kinet, and J. Bouharmont. 1996. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regulation 19: 207–218.
  • Ortas, I., and O. Ustuner. 2014. Determination of different growth media and various mycorrhiza species on citrus growth and nutrient uptake. Scientia Horticulturae 166: 84–90.
  • Porcel, R., R. Aroca, and J. M. Ruíz-Lozano. 2012. Salinity stress alleviation using Arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development 32: 181–200.
  • Porras-Soriano, A., M. L. Soriano-Martín, A. Porras-Piedra, and R. Azcón. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology 166: 1350–1359.
  • Ruiz-Lozano, J. M., R. Porcel, C. Azcón, and R. Aroca. 2012. Regulation by Arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany 63: 4033–4044.
  • Rus, A., S. Yokoi, A. Sharkhuu, M. Reddy, B. Lee, T. K. Matsumoto, H. Koiwa, J. Zhu, R. A. Bressan, and P. M. Hasegawa. 2001. At HKT1 is a salt tolerance determinant that controls Na+entry into plant roots. Proceedings of the National Academy of Sciences 98: 14150–14155.
  • Sannazzaro, A. I., O. A. Ruiz, E. O. Alberto, and A. B. Menéndez. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and Soil 285: 279–287.
  • Sheng, M., M. Tang, H. Chan, B. Yang, F. Zhang, and Y. Huang. 2008. Influence of Arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18: 287–296.
  • Sheng, M., M. Tang, F. Zhang, Y. Huang. 2011. Influence of Arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21: 423–430.
  • Siddiqui, M. H., F. Mohammad, and M. N. Khan. 2009. Morphological and physio-biochemical characterization of Brassica juncea L. Czern. & Coss genotypes under salt stress. Journal of Plant Interaction 4: 67–80.
  • Ustuner, O., S. Wininger, V. Gadkar, H. Badani, M. Raviv, N. Dudai, S. Medina, and Y. Kapulnik. 2009. Evaluation of different compost amendments with AM fungal inoculum for optimal growth of chives. Compost Science and Utilization 17: 257–265.
  • Wu, Q. S., Y. N. Zou, and X. H. He. 2010. Contribution of Arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum 32: 297–304.
  • Zuccarini, P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant, Soil and Environmental 53: 283–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.