266
Views
12
CrossRef citations to date
0
Altmetric
Articles

Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat

, , , &
Pages 1091-1098 | Received 06 Jun 2015, Accepted 27 Jan 2016, Published online: 08 May 2017

References

  • Agarwal, S., and V. Pandey. 2004. Antioxidant enzyme responses to NaCl stress n Cassia angustifoia. Biology of Plants 48:555–560.
  • Al-Karaki, G. N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54.
  • Alyemeni, M. N., S. Hayat, L. Wijaya, and V. Anaji. 2013. Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Botanica Brasilica 27:502–505.
  • Arora, N., R. Bhradwaj, P. Sharma, and H. Kumar. 2008. Effects of 28-homobrassinolide on growth, lipid peroxdation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum 30:833–839.
  • Ashraf, M., and P. J. C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science 166:3–6.
  • Barakat, N., V. Laudadio, E. Cazzato, and V. Tufarelli. 2013. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum L.) treated with phytohormones under salt-stress condition. International Journal of Agriculture and Biology 15:843–849.
  • Bartwal, A., R. Mall, P. Lohani, S. K. Guru, and S. Arora. 2012. Role of secondary metabolites and brassinosteroids in plant defense against environmental stress. Journal of Plant Growth Regulation 32:216–232.
  • Bates, L. S., R. P. Waldren, and I. D. Tear. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 9:205–207.
  • Bheemareddy, V. S., and H. C. Lakshman. 2011. Effect of salt and acid stress on Triticum aestivum inoculated with Glomus fasciclatum. Journal of Agriculture Technology 7:945–956.
  • Bitterlich, M., U. Krugel, K. Boldt-Burisch, P. Franken, and C. Kuhn. 2014. The sucrose transporter SISUT2 from tomato interacts with breassinosteroid functioning and affects arbuscular mycorrhiza formation. The Plant Journal 78:877–889.
  • Campanelli, A., C. Ruta, G. D. Mastro, and I. Morone-Fortunato. 2013. The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var icon. Symbiosis 59:65–76.
  • Cao, S., Q. Xu, Y. Cao, K. Qian, K. An, Y. Zhu, H. Binzeng, H. Zhao, and B. Kuai. 2005. Loss of function mutation in Det2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum 123:57–66.
  • Cavalcanti, F. R., J. T. A. Oliveira, A. S. Martins-Miranda, R. A. Viegas, and J. A. G. Silveira. 2004. Superoxide dismutase, catalase and peroxide activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. Journal of Plant Physiology 163:563–571.
  • Daszkowska-Golec, A. 2011. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. Journal of Integrative Biology 15:763–774.
  • Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany 104:1263–1280.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology 59:309–314.
  • Grattan, S. R., and C. M. Grieve. 1994. Mineral nutrient acquisition and response by plants grown in saline environments. In: Handbook of Plant and Crop Stress, ed. M. Pessarakli, pp. 203–226. New York: Marcel Dekker.
  • Grattan, S. R., and C. M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae 78:127–157.
  • Hanen, F., R. Ksoun, W. Megdiche, N. Trabelsi, M. Boulaaba, and C. Adelly. 2008. Effect of salinity on growth, leaf phenolic content and antioxidant scavenging activity in Cynara cardunulus L. In: Biosaline Agriculture and High Salinity Tolerance, eds. C. Abdelli, M. Ozturk, M. Ashraf, and Y. C. Grignon, pp. 335–343. Basel, Switzerland: Birkhauser Verlag.
  • Harisnaut, P., D. Poonsopa, K. Roengmongkol, and R. Charoensataporn. 2003. Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia 29:109–113.
  • Hasegawa, P. M., R. A. Bressan, J. K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular resposes to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51:463–499.
  • Hu, J., X. J. Xie, Z. F. Wang, and W. J. Song. 2006. Sand priming improves alfalfa germination under high-salt concentration stress. Seed Science and Technology 34:199–204.
  • Jahnke, L. S., and A. White.2003. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine algae Dunaliella tertiolecta. Journal of Plant Physiology 160:1193–1202.
  • Jahromi, F., R. Aroca, R. Porcel, and J. M. Ruiz-Lozano. 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology 55:45–53.
  • Juniper, S., and L. K. Abbott. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379.
  • Kar, M., and D. Mishra. 1976. Catalase, peroxidase and polypheol oxidase activities during rice leaf senescence. Plant Physiology 57:315–319.
  • Ksouri, R., W. Megidiche, A. Debez, H. Fallah, C. Grignon, and C. Abdelly. 2007. Salinity effects on polyphenol content and antioxidant activities in leaves of halophyte Cakile maritime. Plant Physiology and Biochemistry 45:24–249.
  • Kuznetsov, V. V., and N. I. Shevyakova. 1997. Stress responses of tobacco cells to high temperature and salinity: Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum 100:320–326.
  • Maehly, A. C., and B. Chance. 1954. The assay of catalases and peroxidases. Methods in Biochemical Analysis 1:357–424.
  • Martin-Tanguy, J. 2001. Metabolism and functions of polyamines in plants: recent development (new approaches). Plant Growth Regulation 34:135–148.
  • McMillen, B., S. Juniper, and L. K. Abbott. 1998. Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biology Biochemistry 30:1639–1646.
  • Monti, A., E. Brugnoli, A. Scartazza, and M. T. Amaducci. 2006. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). Journal of Experimental Botany 57:1253–1262.
  • Özdemir, F., M. Bor, T. Demiral, and I. Turkan. 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation 42:203–211.
  • Phillips, J. M., and D. S. Hayman. 1970. Impoved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transaction of British Mycological Society 55:158–161.
  • Sheng, M., M. Tang, H. Chan, B. Yang, F. Zhang, and Y. Huang. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296.
  • Stewart, C. R. 1981. Proline accumulation biochemical aspects. In: Physiology and Biochemistry of Drought Resistance in Plants, eds. L. G., Paleg and D. Aspinall, pp. 243–259. Sydney: Academic Press.
  • Takeuchi, Y., Y. migawa, M. Ogasawara, M. Yoeyama, and A. Worsham. 1995. Effects of brassinosteroids on conditioning and germination of clover bromrape (Orobanche minor) seeds. Plant Growth Regulation 16:15–160.
  • Wangcharoen, W., and W. Morasuk. 2007. Antioxidant capacity and phenolic content of chilies. Kasetsart Journal (Natural Science) 41:561–569.
  • Wilson, G. W. T., and D. C. Harnett. 1998. Interspecific variation in plant response to mycorrhizal colonization in tall grass prairie. American Journal of Botany 85:1732–1738.
  • Wu, G. S., Y. N. Zou, and X. H. He. 2010. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum 32:297–304.
  • Vardhini, B. V., and N. A. Anjum. 2015. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science 2:1–16.
  • Yasseen, B. T., J. A. Jurjee, and S. A. Sofajy. 1987. Changes in some growth parameters and nutritional status in maize plants. Environmental and Experimental Botany 62:1–9.
  • Zhang, S., J. Hu, Y. Zhang, X. J. Xie, and A. Knapp. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agriculture Research 58:811–815.
  • Zhong Qun, H., H. Chao Xing, Z., Zhibin, Z. Zhirong and W. Huai Song. 2007. Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces. B: Biointerfaces 59:128–133.
  • Zhu, J. K. 2001. Plant salt tolerance. Trends in Plant Science 6:66–71.
  • Zuccarini, P., and P. Okurowska. 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition 31:497–513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.