197
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effect of application of exogenous nitric oxide at different critical growth stages in alleviating Fe deficiency chlorosis of peanut growing in calcareous soil

, , , , , , & show all
Pages 867-887 | Received 28 Sep 2016, Accepted 12 Apr 2017, Published online: 21 Feb 2018

References

  • Abadía, J., M. Tagliavini, R. Grasa, R. Belkhodja, A. Abadía, M. Sanz, E. Araujo, C. Tsipouridis, and B. Marangoni. 2000. Using the flower Fe concentration for estimating chlorosis status in fruit tree orchards: a summary report. Journal of Plant Nutrition 23:2023–33. doi:10.1080/01904160009382162.
  • Alam, S., S. Kamei, and S. Kawai. 2001. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Science and Plant Nutrition 47:643–49. doi:10.1080/00380768.2001.10408428.
  • Alloway, B. J. 2004. Zinc in soil and crop nutrition. Belgium: International Zinc Association Brussels.
  • Ali, R. and M. N. Khan. 1988. Modified butyrometric method for rapid determination of fat in seeds. Journal of the American Oil Chemists’ Society 65:1951–52. doi:10.1007/BF02546015.
  • Attree, R., B. Dua, and B. J. Xu. 2015. Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Industrial Crops and Products 67:448–56. doi:10.1016/j.indcrop.2015.01.080.
  • Bacaicoa, E., A. M. Zamarreño, D. Leménager, R. Baigorri, and J. M. García-Mina. 2009. Relationship between the hormonal balance and the regulation of iron deficiency stress responses in cucumber. Journal of the American Society for Horticultural Science 134:589–601.
  • Bashir, K., Y. Ishimaru, and N. K. Nishizawa. 2010. Iron uptake and loading into rice grains. Rice 3:122–30. doi:10.1007/s12284-010-9042-y.
  • Besson-Bard, A., A. Gravot, P. Richaud, P. Auroy, C. Duc, F. Gaymard, L. Taconnat, J P. Renou, A. Pugin, and D. Wendehenne. 2009. Nitric oxide contributes to cad-mium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiology 149:1302–15. doi:10.1104/pp.108.133348.
  • Brand, J. D., C. T. Tang, and R. D. Graham. 2000. The effects of nutrient supply, predominantly addition of iron, and rhizobial inoculation on the tolerance of Lupinus pilosus genotypes to a calcareous soil. Plant and Soil 224:207–15. doi:10.1023/A:1004830506175.
  • Briat, J. F., C. Duc, K. Ravet, and F. Gaymard. 2010. Ferritin and iron storage in plants. Biochimica et Biophysica Acta 1800:806–14. doi:10.1016/j.bbagen.2009.12.003.
  • Cakmak, I. and E. Kirkby. 2008. Role of magnesium in carbon partitioning and alleviating photoxidative damage. Physiologia Plantarum 133:692–704. doi:10.1111/j.1399-3054.2007.01042.x.
  • Cesco, S., T. Mimmo, G. Tonon, N. Tomasi, R. Pinton, R. Terzano, G. Neumann, and L. Weisskopf. 2012. Plant-born flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. Biology and Fertility of Soils 48:123–49. doi:10.1007/s00374-011-0653-2.
  • Cesco, S., G. Neumann, N. Tomasi, R. Pinton, and L. Weisskopf. 2010. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil 329:1–25. doi:10.1007/s11104-009-0266-9.
  • Chen, W. W., J. L. Yang, C. Qin, C. W. Jin, J. H. Mo, T. Ye, and S. J. Zheng. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiology 154:810–19. doi:10.1104/pp.110.161109.
  • Cohu, C. M. and M. Pilon. 2007. Regulation of superoxide dismutase expression by copper availability. Physiologia Plantarum 129:747–55. doi:10.1111/j.1399-3054.2007.00879.x.
  • Coulombe, B. A., R. L. Chaney, and W. J. Wiebold. 1984. Bicarbonate directly induces iron chlorosis in susceptible soybean cultivars. Soil Science Society of America Journal 48:1297–301. doi:10.2136/sssaj1984.03615995004800060019x.
  • Covarrubias, J. I. and A. D. Rombolà. 2013. Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Reggeri to iron deficiency and bicarbonate. Plant and Soil 370:305–15. doi:10.1007/s11104-013-1623-2.
  • Cui, X. M., Y. K. Zhang, X. B. Wu, and C. S. Liu. 2010. The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil and Environment 6:274–81.
  • Ding, F., X. F. Wang, Q. H. Shi, M. L. Wang, F. J. Yang, and Q. H. Gao. 2008. Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient chinese cabbage (Brassica chinensis L.). Agricultural Sciences in China 7:168–79. doi:10.1016/S1671-2927(08)60036-X.
  • Dodge, A. 1994. Herbicide action and effects on detoxification processes. In Causes of photoactive stress and amelioration of defense systems in plants, Eds. C. H. Foyer and P. M. Mullineaux, 219–36. Boca Raton: CCR Press.
  • Du, S. T., Y. Liu, P. Zhang, H. J. Liu, X. Q. Zhang, and R. R. Zhang. 2015. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chemistry 173:905–11. doi:10.1016/j.foodchem.2014.10.115.
  • Fox, T. C., J. E. Shaff, M. A. Grusak, W. A. Norvell, Y. Chen, R. L. Chaney, and L. Kochian. 1996. Direct measurement of 59Fe-Labeled Fe2+ influx in roots of pea using a chelator buffer system to control free Fe2+ in solution. Plant Physiology 111:93–100. doi:10.1104/pp.111.1.93.
  • Gao, L. and Y X. Shi. 2007. Genetic differences in resistance to iron deficiency chlorosis in peanut. Journal of Plant Nutrition 30:37–52. doi:10.1080/01904160601054965.
  • Gama, F., T. Saavedra, I. Díaz, M. dC. Campillo, A. de Varennes, A. Duarte, M. Pestana, and P. J. Correia. 2015. Fe deficiency induction in Poncirus trifoliata rootstock growing in nutrient solution changes its performance after transplant to soil. Scientia Horticulturae 182:102–09. doi:10.1016/j.scienta.2014.11.003.
  • García-Mina, J. M., E. Bacaicoa, M. Fuentes, and E. Casanova. 2013. Fine regulation of leaf iron use efficiency and iron root uptake under limited iron bioavailability. Plant Science 198:39–45. doi:10.1016/j.plantsci.2012.10.001.
  • Giannakoula, A., M. Moustakas, P. Mylona, P. Ioannis, and Y. Traianos. 2008.Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline and decreased levels of lipid peroxidation and Al accumulation. Journal of Plant Physiology 165:385–96. doi:10.1016/j.jplph.2007.01.014.
  • Graziano, M., M. V. Beligni, and L. Lamattina. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiology 130:1852–59. doi:10.1104/pp.009076.
  • Graziano, M. and L. Lamattina. 2005. Nitric oxide and iron in plants: an emerging and converging story. Trends in Plant Science 10:4–8. doi:10.1016/j.tplants.2004.12.004.
  • Graziano, M. and L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant Journal 52:949–60. doi:10.1111/j.1365-313X.2007.03283.x.
  • Guo, B., Y. Liang, and Y. Zhu. 2009. Does salicylic acid regulate antioxidant defence system cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology 166:20–31. doi:10.1016/j.jplph.2008.01.002.
  • Guo, X. T., H. C. Xiong, H. Y. Shen, W. Qiu, C. Q. Ji, Z. J. Zhang, and Y. M. Zuo. 2014. Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize: Role in improving iron nutrition in peanut. Plant Physiology Biochemistry 76:36–43. doi:10.1016/j.plaphy.2013.12.019.
  • Hajlaoui, H., M. Denden, and N. E. Ayeb. 2009. Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots. Acta Physiologiae. Plantarum 31:787–96. doi:10.1007/s11738-009-0293-4.
  • Heath R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189–98. doi:10.1016/0003-9861(68)90654-1.
  • He, H., L. He, M. H. Gu, and X. F. Li. 2012. Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Science 183:123–30. doi:10.1016/j.plantsci.2011.07.012.
  • Hirayama, T. and J. M. Alonso. 2000. Ethylene captures a metal! metal ions are involved in ethylene perception and signal transduction. Plant Cell Physiology 41:548–55. doi:10.1093/pcp/41.5.548.
  • Jelali, N., S. Donnini, M. Dell'Orto, C. Abdelly, M. Gharsalli, and G. Zocchi. 2014. Root antioxidant responses of two Pisum sativum cultivars to direct and induced Fe deficiency. Plant Biology. 16:607–14. doi:10.1111/plb.12093.
  • Jin, C. W., S. T. Du, W. W. Chen, G. X. Li, Y. S. Zhang, and S. J. Zheng. 2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency induced responses under iron-limited conditions in tomato. Plant Physiology 150:272–80. doi:10.1104/pp.109.136721.
  • Knudson, L. L., T. W. Tibbitts, and G. E. Edwards. 1977. Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiology 60:606–08. doi:10.1104/pp.60.4.606.
  • Kobayashi, T. and N. K. Nishizawa. 2012. Iron uptake, translocation and regulation in higher plants. Annual Review of Plant Biology 63:131–52. doi:10.1146/annurev-arplant-042811-105522.
  • Kong, J., Y. J. Dong, Y. L. Song, X. Y. Bai, X. Y. Tian, L. L. Xu, S. Liu, and Z. L. He. 2016. Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.). Journal of Plant Growth Regulation 35 (1):31–43. doi:10.1007/s00344-015-9504-y.
  • Kong, J., Y. J. Dong, L. L. Xu, S. Liu, and X. Y. Bai. 2014. Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil. Journal of Plant Interactions 94:450–59. doi:10.1080/17429145.2013.853327.
  • Kumar, P., R. K. Tewari, and P. N. Sharma. 2010. Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants 4:705–20.
  • Lamattina, L., C. Garcia-Mata, M. Graziano, and G. Pagnussat. 2003. Nitric oxide: The versatility of an extensive signal molecule. Annual Review of Plant Biology 54:109–36. doi:10.1146/annurev.arplant.54.031902.134752.
  • Larbi, A., A. Abadia, J. Abadia, and F. Morales. 2006. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynthesis Research 89:113–26. doi:10.1007/s11120-006-9089-1.
  • Laspina, N. V., M. D. Groppa, M. L. Tomaro, and M. P. Benavides. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant and Soil 169:323–30.
  • Li, L. Y., Q. Y. Cai, D. S. Yu, and C. H. Guo. 2011. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis. Molecular Biology Reports 38:3605–13. doi:10.1007/s11033-010-0472-9.
  • Lindsay, W. L. and A. P. Schwab. 1982. The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition. 5:821–40. doi:10.1080/01904168209363012.
  • Lindsay, W. L. and W. A. Norvell. 1978. Development of a DTPA Soil Test for Zn, Fe, Mn and Cd. Soil Science Society of America Procecdings 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Ling, H. Q., P. Bauer, Z. Bereczky, B. Keller, and M. Ganal. 2002.The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proceedings of the National Academy of Sciences United States of America 99:13938–43. doi:10.1073/pnas.212448699.
  • Marschner, H. 1995. Functions of mineral nutrients: micronutrients. In Iron in mineral nutrition of higher plants, 313–24. Cambridge. UK: Academic Press.
  • Mengel, K. 1994. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil 165:275–83. doi:10.1007/BF00008070.
  • Mengel, K., R. Planker, and B. Hoffmann. 1994. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). Journal of Plant Nutrition 17:1053–65. doi:10.1080/01904169409364787.
  • Mohd Rozalli, N. H., N. Chin, and Y. A. Yusof. 2015. Grinding characteristics of Asian originated peanuts (Arachishy pogaea L.) and specific energy consumption during ultra-high speed grinding for natural peanut butter production. Journal of Food Engineering 152:1–7. doi:10.1016/j.jfoodeng.2014.11.027.
  • Molassiotis, A., G. Tanou, G. Diamantidis, A. Patakas, and I. Therios. 2006. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology 163:176–85. doi:10.1016/j.jplph.2004.11.016.
  • Nadal, P., S. López-Rayo, J. Loren, and J J. Lucena. 2013. Efficacy of HBED/Fe3+ at supplying iron to Prunus persica in calcareous soils. European Journal of Agronomy 45:105–13. doi:10.1016/j.eja.2012.11.003.
  • Nickel, K. S. and B. A. Cunningham. 1969. Improved peroxidase assay method using Leuco 2,3,6-trichloro indophenol and application to comparative measurements of peroxidase catalysis. Anal Biochem Analytical Biochemistry 27:292–99. doi:10.1016/0003-2697(69)90035-9.
  • Nikolic, M. and V. Röemheld. 2007. The dynamics of iron in the leaf apoplast. In The apoplast of higher plants: Compartment of storage, Eds. B. S. Horst, 353–71. Netherlands: Transport and Reactions Springer.
  • Orozco-Cárdenas, M. and C. A. Ryan. 2002. Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiology 130:487–93. doi:10.1104/pp.008375.
  • Patra, H L., M. Kar, and D. Mishre. 1978. Catalase activity in leaves and cotyledons during plant development and senescence. Biochemical Pharmacology 172:385–90.
  • Pestana, M., P. J. Correia, T. Saavedra, F. Gama, A. Abadía, and A. de Varennes. 2012. Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant Physiology and Biochemistry 53:1–5. doi:10.1016/j.plaphy.2012.01.001.
  • Pestana, M., P. J. Correia, T. Saavedra, F. Gama, S. Dandlen, G. Nolasco, and d. A. Varennes. 2013. Root ferric chelate reductase is regulated by iron and copper in straw-berry plants. Journal of Plant Nutrition 36:2035–47. doi:10.1080/01904167.2013.816731.
  • Pestana, M., I. Domingos, F. Gama, S. Dandlen, M. G. Miguel, P. J. Castro, d. A. Varennes, and P. J. Correia. 2011. Strawberry recovers from iron chlorosis after foliar application of a grass-clipping extract. Journal of plant Nutrition and Soil Science 174:473–79. doi:10.1002/jpln.201000215.
  • Pestana, M., F. Gama, T. Saavedra, A. Varennes, and P. J. de Correia. 2012. The root ferric-chelate reductase of Ceratonia siliqua (L.) and Poncirus trifoliata (L.) Raf. Respond differently to levels of iron. Scientia Horticulturae 135:65–67. doi:10.1016/j.scienta.2011.12.018.
  • Rombolà, A. D. and M. Tagliavini. 2006. In Iron nutrition in plants and rhizospheric microorganisms, Vol. 3. Eds. L. L. Barton and J. Abadía, 61–83. Dordrecht, Netherlands: Springer.
  • Schmidt, W. 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytologist 141:1–26. doi:10.1046/j.1469-8137.1999.00331.x.
  • Shenker, M. and Y. Chen. 2005. Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Science and Plant Nutrition 51:1–17. doi:10.1111/j.1747-0765.2005.tb00001.x.
  • Shi, G. R., G. Q. Su, Z. W. Lu, C. F. Liu, and X. M. Wang. 2014. Relationship between biomass, seed components and seed Cd concentration in various peanut (Arachishy pogaea L.) cultivars grown on Cd-contaminated soils. Ecotoxicology and Environmental Safety 110:174–81. doi:10.1016/j.ecoenv.2014.09.003.
  • Shi, Q. H. and Z. J. Zhu. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environment and Experimental Botany 63:317–26. doi:10.1016/j.envexpbot.2007.11.003.
  • Simaei, M., R. A. Khavarinejad, S. Saadatmand, F. Bernard, and H. Fahimi. 2011. Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. Journal of Plant Physiology 58:783–90. doi:10.1134/S1021443711050220.
  • Sokolovski, S. G. and M. R. Blatt. 2007. Nitric oxide and plant ion channel control. In Nitric oxide in plant growth, development and stress physiology. Eds. L. Lamattina and J. C. Polacco, 153–71. Berlin, Heidelberg: Springer.
  • Šrámek, F. and M. Dubský. 2011. Occurrence and correction of lime-induced chlorosis in petunia plants. Plant Soil and Environment 57:180–85.
  • Stewart, R. C. and J. D. Bewley. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65:245–48. doi:10.1104/pp.65.2.245.
  • Sun, B., Y. Jing, K. Chen, L. Song, F. Chen, and L. Zhang. 2007. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of Plant Physiology 164:536–43. doi:10.1016/j.jplph.2006.02.011.
  • Swietlik, D. 1999. Zinc nutrition in horticultural crops. Horticultural Reviews 23:109–78.
  • Tsang, E. W. T., C. Bowler, D. Hérouart, W. Van Camp, R. Villarroel, C. Genetello, M. Van Montagu, and D. Inzé. 1991. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–92. doi:10.1105/tpc.3.8.783.
  • Vert, G., N. Grotz, F. Dedaldechamp, F. Gaymard, M. L. Guerinot, J. F. Briat, and C. Curie. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–33. doi:10.1105/tpc.001388.
  • Walker, E. L. and E. L. Connolly. 2008. Time to pump iron: iron deficiency signaling mechanisms of higher plants. Current Opinion in Plant Biology 111:530–35. doi:10.1016/j.pbi.2008.06.013.
  • Wang, L. G., Y. C. Tian, X. Yao, Y. Zhu, and W. X. Cao. 2014. Predicting grain yield and protein content in wheat by fusing multisensor and multi-temporal remote-sensing images. Field Crops Research 164:178–88. doi:10.1016/j.fcr.2014.05.001.
  • Zuo, Y. M., F. S. Zhang, X. L. Li, and Y. P. Cao. 2000. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil 220:13–25. doi:10.1023/A:1004724219988.
  • Zuo, Y. M. and F. S. Zhang. 2011. Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil 339:83–95. doi:10.1007/s11104-010-0566-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.