181
Views
8
CrossRef citations to date
0
Altmetric
Articles

Artificial neural networks to estimate the productivity of soybeans and corn by chlorophyll readings

, , , , &
Pages 1285-1292 | Received 06 Oct 2016, Accepted 26 Feb 2018, Published online: 09 Apr 2018

References

  • Baluja, J., M. P. Diago, L. Rocchi, H. Ochagavia, and J. Tardaguila. 2011. Using a fluorescence proximal sensor to study the spatial variability of grape phenols in a Tempranillo Vineyard. Paper presented at the 8th European Conference on Precision Agriculture, Prague, July.
  • Barbieri, Jr., E., R. O. P. Rossiello, R. V. M. M. Silva, R. C. Ribeiro, and M. J. F. Morenz. 2012. A new chlorophyll meter to estimate chlorophyll contents in leaves of tifton 85 bermudagrass. Ciencia Rural 42 (12):2242–5.
  • Blackmer, T. M., and J. S. Schepers. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. Journal of Production Agriculture 8 (1):56–60. doi:10.2134/jpa1995.0056.
  • Blackmer, T. M., J. S. Schepers, and M. F. Vigil. 1993. Chlorophyll meter reading in corn as affected by plant spacing. Communications in Soil Science and Plant Analysis 24 (17–18):2507–16. doi:10.1080/00103629309368971.
  • Braga, A. P., A. C. P. L. F. Carvalho, and T. B. Ludemir. 2007. Artificial neural network: Theory and applications. 2nd ed. Rio de Janeiro: LTC.
  • Coutinho, E. R., R. M. Silva, A. Ramon, and S. Delgado. 2016. Using computational intelligence technique for the meteorological data prediction. Revista Brasileira de Meteorologia 31 (1):24–36. doi:10.1590/0102-778620140115.
  • Dalen, M., Y. Kanke, B. Tuban, and D. Harrell. 2016. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precision Agriculture 17 (1):507–530. doi:10.1007/s11119-016-9433-1.
  • Dobermann, A., C. Witt, D. Dawe, S. Abdulrachman, H. C. Gines, R. Nagarajan, S. Satawathananont et al. 2002. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research 74 (1):37–66. doi:10.1016/S0378-4290(01)00197-6.
  • Gitelson, A. A., A. Viña, V. Ciganga, D. C. Rundquist, and T. J. Arkebauer. 2005. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters 32 (8):L08403. doi:10.1029/2005GL022688.
  • Hurtado, S. M. C., Á. V. D. Resende, C. A. Silva, E. J. Corazza, and L. S. Shiratsuchi. 2009. Spatial variation of corn response to nitrogen topdressing in a cerrado crop field. Pesquisa Agropecuária Brasileira 44 (3):300–9. doi:10.1590/S0100-204X2009000300012.
  • Isaaks, E. H., and R. Mohan Sirivastava. 1989. An introduction to applied geoestatistics. New York: Oxford University Press.
  • Lacerda, C. F., J. Enéas Filho, and C. B. Pinheiro. 2007. Vegetal fisiology. Fortaleza: Universidade Federal do Ceará. http://www.fisiologiavegetal.ufc.br/apostila.htm.
  • Lacerda, J. J. J., Á. V. de Resende, A. E. Furtini Neto, and O. P. Conceição. 2015. Adubação, Produtividade E Rentabilidade Da Rotação Entre Soja E Milho Em Solo Com Fertilidade Construída. Pesquisa Agropecária Brasileira 50 (9):769–78. doi:10.1590/S0100-204X2015000900005.
  • Lin, F. F., J. S. D. Le Feng Qiu, Y. Y. Shi, L. S. Chen, and K. Wang. 2010. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture 71 (April):S60–5. doi:10.1016/j.compag.2009.09.006.
  • Molin, J. P., F. R. Frasson, L. R. D. Amaral, F. P. Povh, and J. V. Salvi. 2010. Capability of an optical sensor in verifying the sugarcane response to nitrogen rates. Revista Brasileira de Engenharia Agrícola E Ambiental 14 (12):1345–9. doi:10.1590/S1415-43662010001200014.
  • Pimentel, G. F. P., and C. H. Garcia. 2002. Statistics applied to agronomic and forest experiments. Piracicaba: FEALQ.
  • Pocojeski, E., L. S. da Silva, S. Kaefer, V. J. Moro, and G. Gustavo. 2015. Monitoring nutritional status of flooded rice cultivars by chlorophyll meter in nitrogen fertilization management chlorop. Revista Ceres 62 (3):310–8. doi:10.1590/0034-737X201562030011.
  • Silva, I. N. D., D. H. Spatti, and R. A. Flauzino. 2010. Artificial neural networks for engineering and applied sciences: Practical course. São Paulo: ArtLiber.
  • Silva, M. D. A., J. L. Jifon, J. A. G. Da Silva, and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology 19 (3):193–201. doi:10.1590/S1677-04202007000300003.
  • da Silveira, P. M, A. J. B. P. Braz, and A. D. Didonet. 2003. Chlorophyll meter to evaluate the necessity of nitrogen in dry beans. Pesquisa Agropecária Brasileira 38 (9):1083–7. doi:10.1590/S0100-204X2003000900009.
  • Streit, N. M., L. P. Canterle, M. W. Canto, and L. H. H. Hecktheuer. 2005. The chlorophylls. Ciencia Rural 35 (3):748–55. doi:10.1590/S0103-84782005000300043.
  • Tkemaladze, G.Sh., and K. A. Makhashvili. 2016. Climate changes and photosynthesis. Annals of Agrarian Sciences 14 (2):119–26. doi:10.1016/j.aasci.2016.05.012.
  • Tremblay, N., Z. Wang, B.-L. Ma, B. Carl, P. Vigneault, and C. Belec. 2008. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precision Agriculture 10 (2):145–61. doi:10.1007/s11119-008-9080-2.
  • Wang, Q., W. Meng, Y. Ma, and Z. Sun. 2013. Establishment of chlorophyll-a concentration distribution model in Dahuofang reservoir based on HJ-1 satellite. In Geo-informatics in resource management and sustainable ecosystem, eds. F. Bian, Y. Xie, X. Cui, and Y. Zeng, 257–65. Wuhan, China: Springer-Verlag.
  • Wollenhaupt, N. C., R. P. Wolkowski, and M. K. Clayton. 1994. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. Journal of Production Agriculture 7 (4):441–8. doi:10.2134/jpa1994.0441.
  • Wood, C. W., D. W. Reeves, R. R. Duffield, and K. L. Edmisten. 1992. Field chlorophyll measurements for evaluation of corn nitrogen status. Journal of Plant Nutrition 15:487–500. doi:10.1080/01904169209364335.
  • Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology 148 (8–9):1230–41. doi:10.1016/j.agrformet.2008.03.005.
  • Zhao, D., N. C. Glynna, B. Glaza, J. C. Comstocka, and R. M. Johnson. 2012. Development of leaf spectral models for evaluating large numbers of sugarcane genotypes. Crop Science 52 (4):1837–47. doi:10.2135/cropsci2012.01.0054.
  • Zhao, D., V. S. Gordon, J. C. Comstock, N. C. Glynn, and R. M. Johnson. 2016. Assessment of sugarcane yield potential across large numbers of genotypes using canopy reflectance measurements. Crop Science 56 (4):1747–59. doi:10.2135/cropsci2015.12.0747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.