140
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Mineral deficiencies effect on resistance-related enzymes activities in tomato leaves

ORCID Icon
Pages 2320-2329 | Received 18 Aug 2017, Accepted 15 Feb 2018, Published online: 23 Oct 2018

References

  • Alsharafa, K., M. O. Vogel, M. L. Oelze, M. Moore, N. Stingl, K. König, H. Friedman, M. J. Mueller, and K. J. Dietz. 2014. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philosophical Transactions of the Royal Society B 369 (1640):20130424. doi: 10.1098/rstb.
  • Baboulène, L., J. Silvestre, E. Pinelli, and P. Morard. 2007. Effect of Ca deficiency on growth and leaf acid soluble proteins of tomato. Journal of Plant Nutrition 30 (4):497–515. doi:10.1080/01904160701209139.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2):248–54. doi:10.1016/0003-2697(76)90527-3.
  • Bryson, G. M., and A. V. Barker. 2002. Determination of optimal fertilizer concentration range for tomatoes grown in peat-based medium. Communications in Soil Science and Plant Analysis 33 (5–6):759–77. doi:10.1081/CSS-120003064.
  • Bucher, M. 2007. Functional biology of plant phosphate uptake at root and Mycorrhiza interfaces. The New Phytologist 173 (1):11–26. doi:10.1111/j.1469-8137.2006.01935.x
  • Chakhchar, A., S. Wahbi, M. Lamaoui, A. Ferradous, A. El Mousadik, S. Ibnsouda-Koraichi, A. Filali-Maltouf, and C. El Modafar. 2015. Physiological and biochemical traits of drought tolerance in Argania spinosa. Journal of Plant Interactions 10 (1):252–61. doi: 10.1080/17429145.2015.1068386
  • Chen, Q., M. Zhang, and S. Shen. 2011. Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiologiae Plantarum 33 (2):273–8. doi:10.1007/s11738-010-0543-5.
  • Comadira, G., B. Rasool, B. Karpinska, J. Morris, S. R. Verrall, P. E. Hedley, C. H. Foyer, and R. D. Hancock. 2015. Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance. Journal of Experimental Botany 66 (12):3639–55. doi: 10.1093/jxb/erv276.
  • Cramer, C. L., K. Edwards, M. Dron, X. Liang, S. L. Dildine, G. P. Bolwell, R. A. Dixon, C. J. Lamb, and W. Schuch. 1989. Phenylalanine ammonia-lyase gene organization and structure. Plant Molecular Biology 12 (4):367–83. doi:10.1007/BF00017577
  • Criado, M. N., M. Civera, A. Martínez, and D. Rodrigo. 2015. Use of Weibull distribution to quantify the antioxidant effect of Stevia rebaudiana on oxidative enzymes. LWT-Food Science and Technology 60 (2):985–9. doi:10.1016/j.lwt.2014.10.041.
  • Devi, B. S. R., Y. J. Kim, S. K. Selvi, S. Gayathri, K. Altanzul, S. Parvin, D. U. Yang, O. R. Lee, S. Lee, and D. C. Yang. 2012. Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russian Journal of Plant Physiology 59 (3):318–25. doi:10.1134/S1021443712030041.
  • Dietz, K. J. 2014. Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants and Redox Signaling 21 (9):1356–72. doi:10.1134/S1021443712030041.
  • Dixon, R. A., and N. L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell Online 7 (7):1085. doi:10.1105/tpc.7.7.1085
  • Dowd, P. F., D. A. Herms, M. A. Berhow, and L. M. Lagrimini. 2000. Mechanisms of insect resistance in transgenic plants (over) expressing a tobacco anionic peroxidase. Plant Peroxidase Newsletter 14:93–100.
  • Eckardt, N. A. 2011. Retrograde signaling: a new candidate signaling molecule. The Plant Cell 23 (11):3870. doi:10.1105/tpc.7.7.1085.
  • Fu, X., C. Li, X. Zhou, S. Liu, and F. Wu. 2016. Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping. Scientific Reports 6 (1):36445. doi:10.1105/tpc.7.7.1085.
  • Fukasawa-Akada, T., S. D. Kung, and J. C. Watson. 1996. Phenylalanine ammonia-lyase gene structure, expression, and evolution in nicotiana. Plant Molecular Biology 30 (4):711–22. doi:10.1007/BF00019006.
  • Godinez-Vidal, D., M. Rocha-Sosa, E. B. Sepúlveda-García, J. Lara-Reyna, R. Rojas-Martínez, and E. Zavaleta-Mejía. 2008. Phenylalanine ammonia lyase activity in chilli CM-334 infected by Phytophthora capsici and Nacobbusa berrans. European Journal of Plant Pathology 120 (3):299–303. doi:10.1007/s10658-007-9215-8.
  • Gómez-Vásquez, R. O. C. Í. O., R. Day, H. Buschmann, S. Randles, J. R. Beeching, and R. M. Cooper. 2004. Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor‐challenged cassava (Manihot esculenta) suspension cells and leaves. Annals of Botany 94 (1):87–97. doi:10.1093/aob/mch107
  • Hermans, C., J. P. Hammond, P. J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends in in Plant Science 11 (12):610–17. doi: 10.1016/j.tplants.
  • Hossain, M. A., and K. Asada. 1984. Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. Plant and Cell Physiology. 25 (7):1285–95. doi:10.1093/oxfordjournals.pcp.a076837
  • Jenks, M. A., and P.M. Hasegawa, (eds.). 2005. Plant abiotic stress. USA: Blackwell Publishing Ltd.
  • Juszczuk, I. M., A. Wiktorowska, E. Malusá, and A. M. Rychter. 2004. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant and Soil 267 (1–2):41–9. doi:10.1007/s11104-005-2569-9.
  • Kalaji, H. M., A. Oukarroum, V. Alexandrov, M. Kouzmanova, M. Brestic, M. Zivcak, I. A. Samborska, M. D. Cetner, S. I. Allakhverdiev, and V. Goltsev. 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiology and Biochemistry 81:16–25. doi: 10.1016/j.plaphy.2014.03.029.
  • Kervinen, T., S. Peltonen, T. H. Teeri, and R. Karjalainen. 1998. Differential expression of phenylalanine ammonia‐lyase genes in barley induced by fungal infection or elicitors. New Phytologist 139 (2):293–300. doi:10.1046/j.1469-8137.1998.00202.x.
  • Kim, D. S., and B. K. Hwang. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany 65 (9):2295–306. doi:10.1093/jxb/eru109.
  • Kováčik, J., B. Klejdus, M. Bačkor, and M. Repčák. 2007. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science 172 (2):393–9. doi:10.1016/j.plantsci.2006.10.001.
  • Lattanzio, V., V. M. Lattanzio, and A. Cardinali. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research 661: 23–67. India: Research Signpost
  • Le Gall, H., F. Philippe, J. M. Domon, F. Gillet, J. Pelloux, and C. Rayon. 2015. Cell wall metabolism in response to abiotic stress. Plants (Basel, Switzerland) 4 (1):112–66. doi:10.3390/plants4010112.
  • Li, J. F., W. J. Zheng, L. Zeng, J. F. Liu, and M. Y. Wang. 2015. Molecular cloning, expression and sequence analysis of a phenylalanine ammonia-lyase gene from Poncirus trifoliata under iron deficiency. Australian Journal of Botany 62 (8):698–704. doi:10.1071/BT14251.
  • Logemann, E., M. Parniske, and K. Hahlbrock. 1995. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proceedings of the National Academy of Sciences 92 (13):5905–9. doi:10.1073/pnas.92.13.5905.
  • Melgar, J. C., T. S. Abney, and R. A. Vierling. 2006. Peroxidase activity in soybeans following inoculation with Phytophthora sojae. Mycopathologia 161 (1):37–42. doi:10.1007/s11046-005-0721-y.
  • Oelze, M. L., M. O. Vogel, K. Alsharafa, U. Kahmann, A. Viehhauser, V. G. Maurino, and K. J. Dietz. 2012. Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10-or 100-fold light increment and the possible involvement of retrograde signals. Journal of Experimental Botany 63 (3):1297–313. doi: 10.1093/jxb/err356.
  • Passam, H. C., I. C. Karapanos, P. J. Bebeli, and D. Savvas. 2007. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The European Journal of Plant Science and Biotechnology 1 (1):1–21.
  • Pfanz, H., B. Oppmann, P. Wolf, and B. Lomsky. 1994. Detoxification of air pollutions in the presence of apoplastic phenols. Acta Horticulturae 381 (381):360–6.
  • Rai, A. C., M. Singh, and K. Shah. 2012. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiology and Biochemistry 61:108–14. doi: 10.1016/j.plaphy.2012.09.010.
  • Ritter, H., and G. Schulz. 2004. E. 2004. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. The Plant Cell 16 (12):3426–43. doi:10.1105/tpc.104.025288.
  • Shufflebottom, D., K. Edwards, W. Schuch, and M. Bevan. 1993. Transcription of two members of a gene family encoding phenylalanine ammonia‐lyase leads to remarkably different cell specificities and induction patterns. The Plant Journal 3 (6):835–45. doi:10.1111/j.1365-313X.1993.00835.x.
  • Tang, K., J. C. Zhan, H. R. Yang, and W. D. Huang. 2010. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. Journal of Plant Physiology 167 (2):95–102. doi:10.1016/j.jplph.2009.07.011.
  • Tatagiba, S. D., and F. A. Rodrigues. 2016. Magnesium decreases the symptoms of leaf scald on rice leaves. Tropical Plant Pathology 41 (2):132–7. doi:10.1007/s40858-016-0080-x.
  • Tavares, S., D. Vesentini, J. C. Fernandes, R. B. Ferreira, O. Laureano, J. M. Ricardo-Da-Silva, and S. Amâncio. 2013. Vitis vinifera secondary metabolism as affected by sulfate depletion: diagnosis through phenylpropanoid pathway genes and metabolites. Plant Physiology and Biochemistry 66:118–26. doi:10.1016/j.plaphy.2013.01.022.
  • Tuteja, N., and S. K. Sopory. 2008. Chemical signaling under abiotic stress environment in plants. Plant Signaling and Behavior 3 (8):525–36.
  • Verbruggen, N., and C. Hermans. 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and Soil 368 (1–2):87–99. doi:10.1007/s11104-013-1589-0.
  • Vogel, M. O., M. Moore, K. König, P. Pecher, K. Alsharafa, J. Lee, and K. J. Dietz. 2014. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis. The Plant Cell 26 (3):1151–65. doi: 10.1105/tpc.113.121061.
  • Wada, K. C. , Mizuuchi, K., Koshio, A., Kaneko, , K., Mitsui, T., and Takeno, K. 2014. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. Journal of Plant Physiology 171 (11): 895–902. doi:10.1016/j.jplph.2014.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.