495
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat

, &
Pages 702-722 | Received 09 Oct 2017, Accepted 21 Dec 2017, Published online: 18 Feb 2019

References

  • Aftab, T., M. M. Khan, M. Naeem, M. Idrees, J. A. Moinuddin Teixeira da Silva, and M. Ram. 2012. Exogenous nitric oxide donor protects Artemisia annua L. from oxidative stress generated by boron and aluminum toxicity. Ecotoxicology and Environmental Safety 80:60–8.
  • Ahmed-Hamad, A. M., and A. M. Hamada. 2001. Grain soaking presowing in ascorbic acid or thiamin versus the adverse effect of combined salinity and drought on wheat seedlings. In Proceeding: XIIth international photosynthesis congress. Brisbane, Australia, 18–23 August.
  • Ahn, I. P., S. Kim, and Y. H. Lee. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology 138 (3):1505–15.
  • Ahn, I. P., S. Kim, Y. H. Lee, and S. C. Suh. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in arabidopsis. Plant Physiology 143 (2):838–48.
  • Al-Hakimi, A. M., and A. M. Hamada. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biologia Plantarum 44 (2):253.
  • Aquea, F., F. Federici, C. Moscoso, A. Vega, P. Jullian, J. Haseloff, and P. Arce-Johnson. 2012. A molecular framework for the inhibition of arabidopsis root growth in response to boron toxicity. Plant, Cell & Environment 35:719–34. doi: 10.1111/j.1365-3040.2011.02446.x.
  • Ayvaz, M., M. Avci, C. Yamaner, M. Koyuncu, A. Guven, and K. Fagerstedt. 2013. Does excess boron affect the malondialdehyde levels of potato cultivars? EurAsian Journal of BioSciences 7:47. doi: 10.5053/ejobios.2013.7.0.6.
  • Bahuguna, R. N., R. Joshi, A. Shukla, M. Pandey, and J. Kumar. 2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry 57:159–67. doi: 10.1016/j.plaphy.2012.05.003.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1):205–7. doi: 10.1007/BF00018060.
  • Blevins, D. G., and K. M. Lukaszewski. 1998. Boron in plant structure and function. Annual Review of Plant Physiology and Plant Molecular Biology 49 (1):481–500. doi: 10.1146/annurev.arplant.49.1.481.
  • Bonner, J., and H. Bonner. 1948. The B vitamins as plant hormones. Vitamins and Hormones 6:225–75.
  • Boubakri, H., M. A. Wahab, J. Chong, C. Bertsch, A. Mliki, and I. Soustre-Gacougnolle. 2012. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR-like-cell death. Plant Physiology and Biochemistry 57:120–33. doi: 10.1016/j.plaphy.2012.05.016.
  • Capula-Rodríguez, R., L. A. Valdez-Aguilar, D. L. Cartmill, D. Andrew, A. D. Cartmill, and I. Alia-Tejacal. 2016. Supplementary calcium and potassium improve the response of tomato (Solanum lycopersicum L.) to simultaneous alkalinity, salinity, and boron stress. Communications in Soil Science and Plant Analysis 47:505–11. doi: 10.1080/00103624.2016.1141924.
  • Cervilla, L. M., B. Blasco, J. J. Ríos, L. Romero, and J. M. Ruiz. 2007. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany 100 (4):747–56. doi: 10.1093/aob/mcm156.
  • Cervilla, L. M., M. A. Rosales, M. M. Rubio-Wilhelmi, E. Sánchez-Rodríguez, B. Blasco, J. J. Ríos, L. Romero, and J. M. Ruiz. 2009. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science 176 (4):545–52. doi: 10.1016/j.plantsci.2009.01.008.
  • Cervilla, L. M., B. Blasco, J. J. Ríos, M. A. Rosales, E. Sánchez-Rodríguez, M. M. Rubio-Wilhelmi, L. Romero, and J. M. Ruiz. 2012. Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany 2012:1. 17 pages. doi: 10.1155/2012/726206.
  • Chandra, A., A. Anand, P. K. Mandal, and P. Saxena. 2001. Influence of salicylic acid on protein content and catalase activity in relation to systemic acquired resistance in cowpea against root rot. Indian Phytopathology 54:284–7.
  • Chen, L. S., S. Han, Y. P. Qi, and L. T. Yang. 2012. Boron stresses and tolerance in citrus. African Journal of Biotechnology 11:5961–9.
  • Çikili, Y., H. Samet, and S. Dursun. 2015. Mutual effects of boron and zinc on peanut (Arachis hypogaea L.) growth and mineral nutrition. Communications in Soil Science and Plant Analysis 46 (5):641–51. doi: 10.1080/00103624.2015.1005220.
  • Conrath, U., C. M. Pieterse, and B. Mauch-Mani. 2002. Priming in plant-pathogen interactions. Trends in Plant Science 7 (5):210–6.
  • Dursun, A., M. Turan, M. Ekinci, A. Gunes, N. Ataoglu, A. Esringü, and E. Yildirim. 2010. Effects of boron fertilizer on tomato, pepper, and cucumber yields and chemical composition. Communications in Soil Science and Plant Analysis 41 (13):1576–93. doi: 10.1080/00103624.2010.485238.
  • El-Feky, S. S., F. A. El-Shintinawy, E. M. Shaker, and H. A. Shams El-Din. 2012. Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Australian Journal of Crop Science 6:1687–95.
  • El-Feky, S. S., F. A. El-Shintinawy, and E. M. Shaker. 2014. Role of CaCl2 and salicylic acid on metabolic activities and productivity of boron stressed barley (Hordeum vulgare L.). International Journal of Current Microbiology and Applied Sciences 3:368–80.
  • Eraslan, F., A. Inal, A. Gunes, and M. Alpaslan. 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae 113 (2):120–8. doi: 10.1016/j.scienta.2007.03.012.
  • Eser, A., and T. Aydemir. 2016. The effect of kinetin on wheat seedlings exposed to boron. Plant Physiology and Biochemistry: Ppb 108:158–64.
  • Fariduddin, Q., S. Hayat, and A. Ahmad. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41 (2):281–4. doi: 10.1023/B:PHOT.0000011962.05991.6c.
  • Friedrich, W. 1987. Thiamin (Vitamin B1, aneurin). In: Handbuch der vitamine, 240–258. Munich: Urban and chwartzenberg.
  • Gaines, T. P., and G. A. Mitchell. 1979. Boron determination in plant tissue by the azomethine-H method. Communications in Soil Science and Plant Analysis 10 (8):1099–108. doi: 10.1080/00103627909366965.
  • Gamborg, O. L., R. A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50 (1):151–8. doi: 10.1016/0014-4827(68)90403-5.
  • Goyer, A. 2010. Thiamine in plants: Aspects of its metabolism and functions. Phytochemistry 71 (14–15):1615–24.
  • Graham, M. Y., and T. L. Graham. 1994. Wound-associated competency factors are required for the proximal cell responses of soybean to the Phytophthora sojae wall glucan elicitor. Plant Physiology 105 (2):571–8. doi: 10.1104/pp.105.2.571.
  • Hamada, A. M. 2000. Amelioration of drought stress by ascorbic acid, thiamin or aspirin. Indian Journal of Plant Physiology 5:358–64.
  • Hamada, A. M., and A. M. Al-Hakimi. 2009. Exogenous ascorbic acid or thiamine increases resistance of sunflower and maize plants to salt stress. Acta Agronomica Hungarica 57 (3):335–47. doi: 10.1556/AAgr.57.2009.3.8.
  • Hamada, A. M., and L. M. Jonsson. 2013. Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94:135–41.
  • Hamada, A. F., J. Fatehi, and L. M. Jonsson. 2017. Seed treatments with thiamine reduce the performance of generalist and specialist aphids on crop plants. Bulletin of Entomological Research :1–9.
  • Häusler, R. E., F. Ludewig, and S. Krueger. 2014. Amino acids – A life between metabolism and signaling. Plant Science 229:225–37. doi: 10.1016/j.plantsci.2014.09.011.
  • Hildebrandt, T. M., A. N. Adriano Nunes Nesi, W. L. Araújo, and H. P. Braun. 2015. Amino acid catabolism in plants. Molecular Plant 8 (11):1563–79.
  • Holford, I. C. 1997. Soil phosphorus: Its measurement and its uptake by plants. Australian Journal of Soil Research 35 (2):227–39. doi: 10.1071/S96047.
  • Holloway, R. E., and A. M. Alston. 1992. The effects of salt and boron on growth of wheat. Australian Journal of Agricultural Research 43 (5):987–1001. doi: 10.1071/AR9920987.
  • Huang, W. K., H. L. Ji, G. Gheysen, and T. Kyndt. 2016. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology 17 (4):614–24. doi: 10.1111/mpp.12316.
  • Hunter, L. J., J. H. Westwood, G. Heath, K. Macaulay, A. G. Smith, S. A. Macfarlane, P. Palukaitis, and J. P. Carr. 2013. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in arabidopsis. PLoS One 8 (6):e66530.
  • Jackson, M. L. 1973. Soil chemical analysis. Englewood Cliffs, NJ; New Delhi: Prentice-Hall, Inc.
  • Jeong, Y., S. M. Kang, J. L. Cho, and Y. O. Jeong. 2000. Germination of carrot, lettuce, onion and welsh onion seeds are affected by priming chemicals at various concentrations. Korean Journal of Horticultural Science & Technology 18:93–7.
  • Jisha, K. C., and J. T. Puthur. 2014. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) wilczek varieties. Physiology and Molecular Biology of Plants 20 (3):303–12. doi: 10.1007/s12298-014-0234-6.
  • Jisha, K. C., K. Vijayakumari, and J. T. Puthur. 2013. Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum 35 (5):1381–96. doi: 10.1007/s11738-012-1186-5.
  • Joseph, B., D. Jini, and S. Sujatha. 2010. Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian Journal of Crop Science 2:226–35. doi: 10.3923/ajcs.2010.226.235.
  • Kaya, C., A. L. Tuna, M. Dikilitas, M. Ashraf, S. Koskeroglu, and M. Guneri. 2009. Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae 121 (3):284–8. doi: 10.1016/j.scienta.2009.02.011.
  • Kaya, C., M. Ashraf, O. Sonmez, A. L. Tuna, T. Polat, and S. Aydemir. 2015. Exogenous application of thiamin promotes growth and antioxidative defense system at initial phases of development in salt-stressed plants of two maize cultivars differing in salinity tolerance. Acta Physiologiae Plantarum 37:1741.
  • Keunen, E., D. Peshev, J. Vangronsveld, W. Van Den Ende, and A. Cuypers. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell & Environment 36:1242–55. doi: 10.1111/pce.12061.
  • Khan, M. I., M. Fatma, T. S. Per, N. A. Anjum, and N. A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6:462.
  • Koohkan, H., and M. Maftoun. 2016. Effect of nitrogen–boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napus L.). Journal of Plant Nutrition 39 (7):922–31. doi: 10.1080/01904167.2016.1143492.
  • Landi, M., A. Pardossi, D. Remorini, and L. Guidi. 2013. Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environmental and Experimental Botany 85:64–75. doi: 10.1016/j.envexpbot.2012.08.008.
  • León, J., M. A. Lawton, and I. Raskin. 1995. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology 108:1673–8. doi: 10.1104/pp.108.4.1673.
  • Li, L. 1995. Effects of resorcinol and salicylic acid on the formation of adventitious roots on hypocotyls cutting of vigna radiata [J.]. Journal of Tropical and Subtropical Botany 3:67–71.
  • Li, X., M. A. Schuler, and M. R. Berenbaum. 2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419 (6908):712–5. doi: 10.1038/nature01003.
  • Li, C. L., M. Wang, X. M. Wu, D. H. Chen, H. J. Lv, J. L. Shen, Z. Qiao, and W. Zhang. 2016. THI1, a thiamine thiazole synthase, interacts with Ca2+-dependent protein kinase CPK33 and modulates the S-type anion channels and stomatal closure in arabidopsis. Plant Physiology 170 (2):1090–104. doi: 10.1104/pp.15.01649.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. vol. 148, 183–350. Orlando, FL: Academic press.
  • Linsmaier, E. M., and F. Skoog. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiologia Plantarum 18 (1):100–27. doi: 10.1111/j.1399-3054.1965.tb06874.x.
  • Mantri, N., V. Patade, S. Penna, and R. Ford. 2012. Abiotic stress responses in plants: Present and future, in Abiotic stress responses in plants, ed. P. Ahmad and M. N. V. Prasad. New York, NY Springer.
  • Marco, F., M. Bitrián, P. Carrasco, M. V. Rajam, R. Alcázar, and F. T. Antonio. 2015. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology and Biotechnology 2:579–610.
  • Melotto, M., W. Underwood, J. Koczan, K. Nomura, and S. Y. He. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126 (5):969–80. doi: 10.1016/j.cell.2006.06.054.
  • Metwally, A., I. Finkemeier, M. Georgi, and K. J. Dietz. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology 132 (1):272–81.
  • Metwally, A., R. El-Shazoly, and A. M. Hamada. 2012. Effect of boron on growth criteria of some wheat cultivars. Journal of Biology and Earth Sciences 2:B1–9.
  • Metwally, A., R. El-Shazoly, and A. M. Hamada. 2017. Physiological responses to excess boron in wheat cultivars. European Journal of Biological Research 7:1–8.
  • Miura, K., and Y. Tada. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science 5:4–12.
  • Morita, K., and A. Yokota. 2002. Population viability of stream resident salmonids after habitat fragmentation: a case study with white-spotted char (Salvelinus leucomaenis) by an individual based model. Ecological Modelling 155 (1):85–94. doi: 10.1016/S0304-3800(02)00128-X.
  • Mukherjee, S. P., and M. A. Choudhuri. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiologia Plantarum 58 (2):166–70. doi: 10.1111/j.1399-3054.1983.tb04162.x.
  • Nable, R. O. 1988. Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism. Plant and Soil 112 (1):45–52. doi: 10.1007/BF02181751.
  • Ogawa, D., N. Nakajima, T. Sano, M. Tamaoki, M. Aono, A. Kubo, M. Kanna, M. Ioki, H. Kamada, and H. Saji. 2005. Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiology 46 (7):1062–72.
  • Ohira, K., K. Ojima, and A. Fujiwara. 1973. Studies on the nutrition of rice cell culture I. A simple, defined medium for rapid growth in suspension culture. Plant and Cell Physiology 14: 1113–121. doi: 10.1093/oxfordjournals.pcp.a074950.
  • Page, A. L., R. H. Miller, and D. R. Keeney. 1982. Methods of soil analysis. Part 2: Chemical and microbiological properties. 2nd ed. Madison, Wisconsin: Amer. Soc. Agron. Inc. Soil Sci. Soc. Of Am.
  • Pandey, N. A. 2013. Antioxidant responses and water status in brassica seedlings subjected to boron stress. Acta Physiologiae Plantarum 35:697–706.
  • Pang, Y., L. Li, F. Ren, P. Lu, P. Wei, J. Cai, L. Xin, J. Zhang, J. Chen, and X. Wang. 2010. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in arabidopsis. Journal of Genetics and Genomics 37 (6):389–97. doi: 10.1016/S1673-8527(09)60057-6.
  • Papadakis, I., K. Dimassi, A. Bosabalidis, I. Therios, A. Patakas, and A. Giannakoula. 2004. Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Science 166 (2):539–47. doi: 10.1016/j.plantsci.2003.10.027.
  • Pardossi, A., M. Romani, G. Carmassi, L. Guidi, M. Landi, L. Incrocci, R. Maggini, M. Puccinelli, W. Vacca, and M. Ziliani. 2015. Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant and Soil 395 (1–2):375–89. doi: 10.1007/s11104-015-2571-9.
  • Pastorczyk, M., I. Giełwanowska, and L. B. Lahuta. 2014. Changes in soluble carbohydrates in polar caryophyllaceae and poaceae plants in response to chilling. Acta Physiologiae Plantarum 36 (7):1771–80. doi: 10.1007/s11738-014-1551-7.
  • Patel, M. S., and B. A. Golakiya. 1986. Effect of calcium carbonate and boron application on yield and nutrient uptake by groundnut. Indian Society of Soil Science 84:815–20.
  • Pei, Z. M., Y. Murata, G. Benning, S. Thomine, B. Klusener, G. J. Allen, E. Grill, and J. I. Schroeder. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406 (6797):731–4. doi: 10.1038/35021067.
  • Pérez-López, U., A. Robredo, M. Lacuesta, A. Muñoz-Rueda, and A. Mena-Petite. 2010. Atmospheric CO2 concentration influences the contributions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. Journal of Plant Physiology 167 (1):15–22. doi: 10.1016/j.jplph.2009.06.019.
  • Petrov, V. D., and F. V. Breusegem. 2012. Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants 2012:pls014.
  • Rao, M. V., G. Paliyath, D. P. Ormrod, D. P. Murr, and C. B. Watkins. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiology 115 (1):137–49. doi: 10.1104/pp.115.1.137.
  • Rapala-Kozik, M., E. Kowalska, and K. Ostrowska. 2008. Modulation of thiamine metabolism in zea mays seedlings under conditions of abiotic stress. Journal of Experimental Botany 59 (15):4133–43. doi: 10.1093/jxb/ern253.
  • Reid, R., and K. Fitzpatrick. 2009. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiology 151 (1):413–20.
  • Rosa, M., C. Prado, G. Podazza, R. Interdonato, J. A. González, M. Hilal, and F. E. Prado. 2009. Soluble sugars-metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior 4:388–493. doi: 10.4161/psb.4.5.8294.
  • Sakamoto, T., Y. T. Inui, S. Uraguchi, T. Yoshizumi, S. Matsunaga, M. Mastui, M. Umeda, K. Fukui, and T. Fujiwara. 2011. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. The Plant Cell 23 (9):3533–46.
  • Samet, H., Y. Çikili, and S. Dursun. 2015. The role of potassium in alleviating boron toxicity and combined effects on nutrient contents in pepper (Capsicum annuum L.). Bulgarian Journal of Agricultural Science 21:64–70.
  • Sang, W., Z. R. Huang, Y. P. Qi, L. T. Yang, P. Guo, and L. S. Chen. 2015. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. Journal of Proteomics 123:128–46. doi: 10.1016/j.jprot.2015.04.007.
  • Savvides, A., S. Ali, M. Tester, and V. Fotopoulos. 2016. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends in Plant Sciences 21 (4):329–40. doi: 10.1016/j.tplants.2015.11.003.
  • Siddiqui, M. H., M. H. Al-Whaibi, A. M. Sakran, H. M. Ali, M. O. Basalah, M. Faisal, A. Alatar, and A. A. Al-Amri. 2013. Calcium-induced amelioration of boron toxicity in radish. Journal of Plant Growth Regulation 32 (1):61–71. doi: 10.1007/s00344-012-9276-6.
  • Silva, B., P. R. Souza, D. M. Callegari, V. F. Alves, A. K. Lobato, and E. M. G. Lobato. 2016. Boron supply and water deficit consequences in young paricá (Schizolobium parahyba var. Amazonicum) plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44 (1):250–6. doi: 10.15835/nbha44110136.
  • Singh, V., and S. P. Singh. 1983. Effect of applied boron on the chemical composition of lentil plants. Journal of the Indian Society of Soil Science 31:169–70.
  • Singh, V., and S. P. Singh. 1984. Effect of applied boron on nutrients and uptake by barley crop. Current Agriculture 8:86–90.
  • Sotiropoulos, T. E., A. Molassiotis, D. Almaliotis, G. Mouhtaridou, K. N. Dimassi, I. N. Therios, and G. Diamantidis. 2006. Growth, nutritional status, chlorophyll content, and antioxidant responses of the apple rootstockMM111 shoots cultured under high boron concentrations in vitro. Journal of Plant Nutrition 29 (3):575–83. doi: 10.1080/01904160500526956.
  • Stein, H., A. Honig, G. Miller, O. Erster, H. Eilenberg, L. N. Csonka, L. Szabados, C. Koncz, and A. Zilberstein. 2011. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Science 181 (2):140–50. doi: 10.1016/j.plantsci.2011.04.013.
  • Szabados, L., and A. Savouré. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15 (2):89–97.
  • Thimann, K. V. 1963. Plant growth substances; past, present and future. Annual Review of Plant Physiology 14 (1):1–19. doi: 10.1146/annurev.pp.14.060163.000245.
  • Tuna, A. L., C. Kaya, H. Altunlu, and M. Ashraf. 2013. Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress. Australian Journal of Crop Science 7:1181–8.
  • Tunc-Ozdemir, M., G. Miller, L. Song, J. Kim, A. Sodek, S. Koussevitzky, A. N. Misra, R. Mittler, and D. Shintani. 2009. Thiamin confers enhanced tolerance to oxidative stress in arabidopsis. Plant Physiology 151 (1):421–32. doi: 10.1104/pp.109.140046.
  • Uluisik, I., A. Kaya, D. E. Fomenko, H. C. Karakaya, B. A. Carlson, V. N. Gladyshev, and A. Koc. 2011. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6 (11):e27772. doi: 10.1371/journal.pone.0027772.
  • Uzunova, A. N., and L. P. Popova. 2000. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38 (2):243–50.
  • Voxeur, A. A., and S. C. Fry. 2014. Glycosylinositol phosphorylceramides from rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. The Plant Journal 79 (1):139–49. doi: 10.1111/tpj.12547.
  • Wani, A. B., H. Chadar, A. H. Wani, S. Singh, and N. Upadhyay. 2017. Salicylic acid to decrease plant stress. Environmental Chemistry Letters 15:101–23. doi: 10.1007/s10311-016-0584-0.
  • Went, F. W., J. Bonner, and G. C. Warner. 1938. Aneurin and the rooting of cuttings. Science (New York, N.Y.) 87 (2251):170–1.
  • Wildermuth, M. C., J. Dewdney, G. Wu, and F. M. Ausubel. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414 (6863):562–5. doi: 10.1038/35107108.
  • Wimmer, M. A., and H. E. Goldbach. 2007. Boron in the apoplast of higher plants. In: The apoplast of higher plants: compartment of storage, transport and reactions, ed. A. Sattelmacher and A. Horst, 19–32. Springer, New York.
  • Xiu-Li, W., O. Yong-Bin, Y. Gai-Huan, C. Yong-Fu, W. Yang, and Y. Yin-An. 2015. Physiological responses of two poplar species to high boron stress. Chinese Journal of Plant Ecology 39 (4):407–15. doi: 10.17521/cjpe.2015.0040.
  • Yalpani, N., A. J. Enyedi, J. León, and I. Raskin. 1994. Ultra violet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–6.
  • Zhou, J., A. Sun, and D. Xing. 2013. Modulation of cellular redox status by thiamine activated NADPH oxidase confers arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany 64 (11):3261–72. doi: 10.1093/jxb/ert166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.