2,638
Views
211
CrossRef citations to date
0
Altmetric
Review

Aminochelates in plant nutrition: a review

&
Pages 67-78 | Received 10 Oct 2017, Accepted 28 Nov 2017, Published online: 30 Dec 2018

References

  • Abdul-Qados, A. M. S. 2009. Effect of arginine on growth, yield and chemical constituents of wheat grown under salinity condition. Academic Journal of Plant Sciences 2:267–78.
  • Amin, A. A., F. A. E. Gharib, M. El-Awadi, and E.-S. M. Rashad. 2011. Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae 129 (3):353–60. doi:10.1016/j.scienta.2011.03.052.
  • Ashmead, H. D. 1986. Foliar feeding of plants with amino acid chelates. Park Ridge: Noyes Publications.
  • Ashraf, M., and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2):206–16. doi: 10.1016/j.envexpbot.2005.12.006.
  • Bucheli-Witschel, M., and T. Egli. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. Fems Microbiology Reviews 25:69–109. doi: 10.1111/j.1574-6976.2001.tb00572.x.
  • Claussen, W. 2002. Growth, water use efficiency, and proline content of hydroponically grown tomato plants as affected by nitrogen source and nutrient concentration. Plant and Soil 247 (2):199–209.
  • Dehnavard, S., M. K. Souri, and S. Mardanlu. 2017. Tomato growth responses to foliar application of ammonium sulfate in hydroponic culture. Journal of Plant Nutrition 40 (3):315–23. doi: 10.1080/01904167.2016.1240191.
  • El Sayed, O. M., O. H. M. El Gammal, and A. S. M. Salama. 2014. Effect of proline and tryptophan amino acids on yield and fruit quality of manfalouty pomegranate variety. Scientia Horticulturae 169:1–5. doi: 10.1016/j.scienta.2014.01.023.
  • Fageria, N. K., and V. C. Baligar. 2005. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy 88:97–185.
  • Fahimi, F., M. K. Souri, and F. Yaghoubi Sooraki. 2016. Growth and development of greenhouse cucumber under foliar application of biomin and humifolin fertilizers in comparison to their soil application and NPK. Journal of Science and Technology of Greenhouse Culture 7 (25):143–52. doi: 10.18869/acadpub.ejgcst.7.1.143.
  • Fernández, V., and G. Ebert. 2005. Foliar iron fertilization: a critical review. Journal of Plant Nutrition 28 (12):2113–24. doi: 10.1080/01904160500320954.
  • Forsum, O., H. Svennerstam, U. Ganeteg, and T. Näsholm. 2008. Capacities and constraints of amino acid utilization in Arabidopsis. The New Phytologist 179 (4):1058–69.
  • Garcia, A. L., R. Madrid, V. Gimeno, W. M. Rodriguez-Ortega, N. Nicolas, and F. Garcia-Sanchez. 2011. The effects of amino acids fertilization incorporated to the nutrient solution on mineral composition and growth in tomato seedlings. Spanish Journal of Agricultural Research 9 (3):852–61. doi: 10.5424/sjar/20110903-399-10.
  • Ge, T., S. Song, P. Roberts, D. L. Jones, D. Huang, and K. Iwasaki. 2009. Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings. Environmental and Experimental Botany 66 (3):357–61. doi: 10.1016/j.envexpbot.2009.05.004.
  • Ghasemi, S., A. H. Khoshgoftarmanesh, M. Afyuni, and H. Hadadzadeh. 2013. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy 45:68–74. doi: 10.1016/j.eja.2012.10.012.
  • Ghasemi, S., A. H. Khoshgoftarmanesh, M. Afyuni, and H. Hadadzadeh. 2014. Iron (II)–amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Scientia Horticulturae 165:91–8. doi: 10.1016/j.scienta.2013.10.037.
  • Ghasemi, S., A. H. Khoshgoftarmanesh, H. Hadadzadeh, and M. Jafari. 2012. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. Journal of Plant Growth Regulation 31 (4):498–508. doi: 10.1007/s00344-012-9259-7.
  • Ghoname, A. A., A. M. El-Bassiouny, A. M. R. Abdel-Mawgoud, W. A. El-Tohamy, and N. Gruda. 2012. Growth, yield and blossom-end rot incidence in bell pepper as affected by phosphorus level and amino acid applications. Gesunde Pflanzen 64 (1):29–37. doi: 10.1007/s10343-012-0272-3.
  • Grill, E., E. L. Winnacker, and M. H. Zenk. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–6. doi: 10.1105/tpc.006312.
  • Guo, F. Q., J. Young, and N. M. Crawford. 2003. The nitrate transporter AtNRT1·1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in arabidopsis. The Plant Cell 15 (1):107–17. doi: 10.1105/tpc.006312.
  • Haydon, M. J., and C. S. Cobbett. 2007. Transporters of ligands for essential metal ions in plants. The New Phytologist 174 (3):499–506.
  • Hoque, M. A., E. Okuma, M. N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology 164 (5):553–61. doi: 10.1016/j.jplph.2006.03.010.
  • Hyvömen, H., M. Orama, H. Saarinen, and R. Aksela. 2003. Studies on biodegradable chelating agents: Complexation of iminodusuccinic acid (ISA) with Cu (II), Zn (II), Mn (II) and Fe(III) ions in aqueous solution. Green Chemistry 5:410–4. doi: 10.1039/B303372B.
  • Jie, M., W. Raza, Y. C. Xu, and Q. R. Shen. 2008. Preparation and optimization of amino acid chelated micronutrient fertilizer by hydrolyzation of chicken waste feathers and the effects on growth of rice. Journal of Plant Nutrition 31 (3):571–82. doi: 10.1080/01904160801895092.
  • Kari, F. G., S. Hilger, and S. Canonica. 1995. Determination of the reaction quantum yield for the photochemical degradation of Fe(III)-EDTA: Implications for the environmental fate of EDTA in surface waters. Environmental Science and Technology 29:1008–17. doi: 10.1016/j.foodchem.2008.04.032.
  • Keutgen, A., and E. Pawelzik. 2008. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry 111 (3):642–7. doi: 10.1016/j.foodchem.2008.04.032.
  • Klair, S., R. C. Hider, M. Z. Adams, and R. A. Leigh. 1996. Studies of iron transport in wheat using synthetic phytosiderophores. Journal of Plant Nutrition 19 (8-9):1295–307. doi: 10.1080/01904169609365199.
  • Knipp, G., and B. Honermeier. 2006. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. Journal of Plant Physiology 163 (4):392–7. doi: 10.1016/j.jplph.2005.03.014.
  • Koksal, A. I., H. Dumanoglu, N. T. Gunes, and M. Aktas. 1999. The effects of different amino acid chelate foliar fertilizers on yield, fruit quality, shoot growth and Fe, Zn, Cu, Mn content of leaves in williams pear cultivar (Pyrus communis L.). Turkish Journal of Agriculture and Forestry 23 (6):651–8.
  • Marschner, P. 2011. Marschner’s mineral nutrition of higher plants. 3rd ed. London: Elsevier.
  • Mohammadi, P., and A. H. Khoshgoftarmanesh. 2014. The effectiveness of synthetic zinc (Zn)-amino chelates in supplying Zn and alleviating salt-induced damages on hydroponically grown lettuce. Scientia Horticulturae 172:117–23. doi: 10.1016/j.scienta.2014.03.047.
  • Näsholm, T., K. Kielland, and U. Ganeteg. 2009. Uptake of organic nitrogen by plants. The New Phytologist 182 (1):31–48.
  • Parasad, R. 1998. Fertilizer urea, food security, health and the environment. Current Science 75:675–83.
  • Rafie, M. R., A. H. Khoshgoftarmanesh, H. Shariatmadari, A. Darabi, and N. Dalir. 2017. Influence of foliar-applied zinc in the form of mineral and complexed with amino acids on yield and nutritional quality of onion under field conditions. Scientia Horticulturae 216:160–8. doi: 10.1016/j.scienta.2017.01.014.
  • Rizwan, M., S. Ali, A. Hussain, Q. Ali, M. B. Shakoor, M. Zia-Ur-Rehman, M. Farid, and M. Asma. 2017. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42. doi: 10.1016/j.chemosphere.2017.08.071.
  • Römheld, V. 2000. The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. Journal of Plant Nutrition 23 (11–12):1629–43. doi: 10.1080/01904160009382129.
  • Sadak, M., M. T. Abdoelhamid, and U. Schmidhalter. 2015. Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with sea water. Acta Biológica Colombiana 20 (1):141–52.
  • Saeedi, R., N. Etemadi, and A. Nikbakht. 2015. Calcium chelated with amino acids improves quality and postharvest life of lisianthus (Eustoma grandiflorum cv. Cinderella lime). HortScience 50:1394–8.
  • Sánchez, A. S., M. Juárez, J. Sánchez-Andreu, J. Jordá, and D. Bermúdez. 2005. Use of humic substances and amino acids to enhance iron availability for tomato plants from applications of the chelate FeEDDHA. Journal of Plant Nutrition 28 (11):1877–86. doi: 10.1080/01904160500306359.
  • Sekhon, B. S. 2003. Chelates for micronutrient nutrition among crops. Resonance 8 (7):46–53. doi: 10.1007/BF02834402.
  • Sharma, S. S., and K. J. Dietz. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57 (4):711–26. doi: 10.1093/jxb/erj073.
  • Souri, M. K., G. Neumann, and V. Römheld. 2009. Nitrogen forms and water consumption in tomato plants. Horticulture Environment and Biotechnology 50:377–83.
  • Souri, M. K., and B. Yarahmadi. 2016. Effect of amino chelates foliar application on growth and development of marigold (Calendula officinalis) plants. Iranian Journal of Plant Production Technology 15 (2):109–19.
  • Souri, M. K. 2015. Chelates and aminochelates; and their role in plant nutrition, 172. Tehran, Iran: Agriculture Education and Extention Press.
  • Souri, M. K. 2016. Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture 1:118–23.
  • Souri, M. K., F. Yaghoubi Sooraki, and M. Moghadamyar. 2017. Growth and quality of cucumber, tomato, and green bean plants under foliar and soil applications of an aminochelate fertilizer. Horticulture Environment and Biotechnology 58 (6):530–536.
  • Svennerstam, H., U. Ganeteg, C. Bellini, and T. Näsholm. 2007. Comprehensive screening of arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiology 143 (4):1853–60. doi: 10.1104/pp.106.092205.
  • Svennerstam, H., U. Ganeteg, C. Bellini and T. Näsholm. 2008. Root uptake of cationic amino acids by arabidopsis depends on functional expression of amino acid permease 5. New Phytologist 180 (3):620–30. doi: 10.1111/j.1469-8137.2008.02589.x.
  • Tegeder, M. 2014. Transporters involved in source to sink partitioning of amino acids and ureides: Opportunities for crop improvement. Journal of Experimental Botany 65 (7):1865–78. doi: 10.1093/jxb/eru012.
  • Teixeira, W. F., E. B. Fagan, L. H. Soares, R. C. Umburanas, K. Reichardt, and D. D. Neto. 2017. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in Plant Science 8:327. doi:10.3389/fpls.2017.00327.
  • Thakur, P. S., and V. K. Rai. 1982. Dynamics of amino acid accumulation in two differentially drought resistant zea mays cultivar in response to osmotic stress. Environmental and Experimental Botany 22 (2):221–6. doi:10.1016/0098-8472(82)90042-9.
  • Zeid, I. M. 2009. Effect of arginine and urea on polyamines content and growth of bean under salinity stress. Acta Physiologiae Plantarum 31 (1):65–70. doi: 10.1007/s11738-008-0201-3.
  • Zhang, S., F. Hu, and H. Li. 2009. Effects of earthworm mucus and amino acids on cadmium subcellulardistribution and chemical forms in tomato seedlings. Bioresource Technology 100:4041–6. doi: 10.1007/s11104-007-9206-8.
  • Zhou, Z., J. Zhou, R. Li, H. Wang, and J. Wang. 2007. Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant and Soil 292 (1–2):105–17. doi: 10.1007/s11104-007-9206-8.
  • Zobiole, L. H. S., R. S. de Oliveira Junior, J. Constantin, R. J. Kremer, and D. F. Biffe. 2012. Amino acid application can be an alternative to prevent glyphosate injury in glyphosate-resistant soybeans. Journal of Plant Nutrition 35 (2):268–87. doi: 10.1080/01904167.2012.636130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.