415
Views
21
CrossRef citations to date
0
Altmetric
Articles

Effect of plant growth regulators, calcium and citric acid on copper toxicity in pea seedlings

, ORCID Icon &
Pages 1230-1242 | Received 23 Oct 2016, Accepted 26 Oct 2018, Published online: 29 Apr 2019

References

  • Ahmad, P., G. Nabi, and M. Ashraf. 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany 77:36–44. doi: 10.1016/j.sajb.2010.05.003.
  • Ahmad, P., M. Sarwat, N. A. Bhat, M. R. Wani, A. G. Kazi, and L. S. P. Tran. 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. &Coss.) by calcium application involves various physiological and biochemical strategies. Plos One 10:e0114571. doi: 10.1371/journal.pone.0114571.
  • Airaki, M., M. Leterrier, R. M. Mateos, R. Valderrama, M. Chaki, J. B. Barroso, L. A. Del Río, J. M. Palma, and F. J. Corpas. 2012. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell & Environment 35 (2):281–95. doi: 10.1111/j.1365-3040.2011.02310.x.
  • Alaoui-Sossé, B., P. Genet, F. Vinit-Dunand, M. L. Toussaint, D. Epron, and P. M. Badot. 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science 166 (5):1213–8. doi: 10.1016/j.plantsci.2003.12.032.
  • Ali, M. A., H. N. Asghar, M. Y. Khan, M. Saleem, M. Naveed, and N. K. Niazi. 2015. Alleviation of nickel-induced stress in mung bean through application of gibberellic acid. International Journal of Agriculture and Biology 17 (5):990–4. doi: 10.17957/IJAB/15.0001.
  • Apel, K., and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55 (1):373–99. doi: 10.1146/annurev.arplant.55.031903.141701.
  • Bergmeyer, H. U., and E. Bernt. 1974. Malate dehydrogenase in: Methods of enzymatic analysis. eds. H. U. Bergmeyer, pp. 1577–1580. New York: Academic Press Inc.
  • Bouazizi, H., H. Jouili, and E. Ferjani. 2007. Copper-induced oxidative stress in maize shoots (Zea mays L.): H2O2 accumulation and peroxidases modulation. Acta Biologica Hungarica 58 (2):209–18. doi: 10.1556/ABiol.58.2007.2.7.
  • Borgmann, U., M. Nowierski, and D. G. Dixon. 2005. Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model. Aquatic Toxicology 73 (3):268–87. doi: 10.1016/j.aquatox.2005.03.017.
  • Bramm, J. 1992. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proceedings of the National Academy of Sciences of the United States of America 89:3213–3216.
  • Cha, J. Y., J. Y. Kim, I. J. Jung, M. R. Kim, A. Melencion, S. S. Alam, D. J. Yun, S. Y. Lee, M. G. Kim, W. Y. Kim. 2014. NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought. Plant Physiology and Biochemistry 80:184–91. doi: 10.1016/j.plaphy.2014.04.008.
  • Chaoui, A., and E. El Ferjani. 2013. β-Estradiol protects embryo growth from heavy metal toxicity in germinating lentil seeds. Journal of Plant Growth Regulation 32 (3):636–45. doi: 10.1007/s00344-013-9332-x.
  • Chaoui, A., and E. El Ferjani. 2014. Heavy metal-induced oxidative damage is reduced by β-Estradiol application in lentil seedlings. Plant Growth Regulation 74 (1):1–9. doi: 10.1007/s10725-014-9891-2.
  • Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212 (4):475–86. doi: 10.1007/s004250000458.
  • Connan, S., and D. B. Stengel. 2011. Impacts of ambient salinity and copper on brown alga: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquatic Toxicology 104 (1–2):94–107. doi: 10.1016/j.aquatox.2011.03.015.
  • Dghim, A. A., A. Mhamdi, M. V. Vaultier, M. P. Hasenfratz-Sauder, D. L. Thiec, P. Dizengremel, G. Noctor, and Y. Jolivet. 2013. Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiod-influenced responses to ozone using Arabidopsis knockout mutants. Plant, Cell and Environment 36:1981–91. doi: 10.1111/pce.12104.
  • Falkowska, M., A. Poetryczuk, A. Piotrowska, A. Bajguz, A. Grygoruk, and R. Czerpal. 2011. The effect of gibberellic acid (GA3) growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophycear) beijerinck exposed to cadmium and lead stress. Polish Journal of Environmental Studies 20:53–9.
  • Farooq, H., H. N. Asghar, M. Y. Khan, M. Saleem, Z. A. Zahir. 2015. Auxin-mediated growth of rice in cadmium-contaminated soil. Turkish Journal of Agriculture and Forestry 39:272–6. doi: 10.3906/tar-1405-54.
  • Farzadfar, S., F. Zarinkamar, S. A. M. Modarres-Sanavy, and M. Hojati. 2013. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environmental Science and Pollution Research 20 (3):1413–22. doi: 10.1007/s11356-012-1181-9.
  • Feigl, G., D. Kumar, N. Lehotai, A. Pető, Á. Molnár, É. Rácz, A. Ördög, L. Erdei, Z. Kolbert, and G. Laskay. 2015. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage. Acta Biologica Hungarica 66 (2):205–21. doi: 10.1556/018.66.2015.2.7.
  • Grappin, P., D. Bouinot, B. Sotta, E. Miginiac, and M. Jullien. 2000. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210 (2):279–85. doi: 10.1007/PL00008135.
  • Groot, S. P. C., and C. M. Karssen. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171 (4):525–31. doi: 10.1007/BF00392302.
  • Habiba, U., S. Ali, M. Farid, M. B. Shakoor, M. Rizwan, M. Ibrahim, G. H. Abbasi, T. Hayat, and B. Ali. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environmental Science and Pollution Research 22 (2):1534–44. doi: 10.1007/s11356-014-3431-5.
  • Hadi, F., N. Ali, and A. Ahmad. 2014. Enhanced phytoremediation of cadmium-contaminated Soil by Parthenium hysterophorus Plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Bioremediation Journal 18 (1):46–55. doi: 10.1080/10889868.2013.834871.
  • He, S., Z. He, Q. Wu, L. Wang, and X. Zhang. 2015. Effects of GA3 on plant physiological properties, extraction, subcellular distribution and chemical forms of Pb in Lolium perenne. International Journal of Phytoremediation 17 (12):1153–9. doi: 10.1080/15226514.2015.1045124.
  • Iqbal, M., and M. Ashraf. 2013. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany 86:76–85. doi: 10.1016/j.envexpbot.2010.06.002.
  • Ishida, A., K. Ookubo, and K. Ono. 1987. Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant and Cell Physiology 28:723–6. doi: 10.1093/oxfordjournals.pcp.a077349.
  • Islam, M. M., M. A. Hoque, E. Okuma, M. N. A. Banu, Y. Shimoishi, Y. Nakamura, and Y. Murata. 2009. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology 166 (15):1587–97. doi: 10.1016/j.jplph.2009.04.002.
  • Kapoor, D., R. Sharma, N. Handa, H. Kaur, A. Rattan, P. Yadav, V. Gautam, R. Kaur, and R. Bhardwaj. 2015. Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontier in Environmental Science 3:13. doi: 10.3389/fenvs.2015.00013.
  • Karmous, I., K. Jaouani, A. Chaoui, and E. El Ferjani. 2012. Proteolytic activities in Phaseolus vulgaris cotyledons under copper stress. Physiology and Molecular Biology of Plants 18 (4):337–43. doi: 10.1007/s12298-012-0128-4.
  • Kinraide, T. B., J. F. Pedler, and D. R. Parker. 2004. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant and Soil 259 (1/2):201–8. doi: 10.1023/B:PLSO.0000020972.18777.99.
  • Kopittke, P. M., T. B. Kinraide, P. Wang, F. P. C. Blamey, S. M. Reichman, and N. W. Menzies. 2011. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environmental Science & Technology 45 (11):4966–73. doi: 10.1021/es1041404.
  • Lequeux, H., C. Hermans, S. Lutts, and N. Verbruggen. 2010. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry 48 (8):673–82. doi: 10.1016/j.plaphy.2010.05.005.
  • Leόn, A. M., J. M. Palma, F. J. Corpas, M. Gόmez, M. C. Romero-Puertas, D. Chatterjee, R. M. Mateos, L. A. Del Río, and L. M. Sandalio. 2002. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiology and Biochemistry 40:813–20. doi: 10.1016/S0981-9428(02)01444-4.
  • Lozano, R. M., J. H. Wong, B. C. Yee, A. Peters, K. Kobrehel, and B. B. Buchanan. 1996. New evidence for a role for thioredoxin h in germination and seedling development. Planta 200:100–6.
  • Luo, X. S., L. Z. Li, and D. M. Zhou. 2008. Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. Chemosphere 73 (3):401–6. doi: 10.1016/j.chemosphere.2008.05.031.
  • Matsumura, H., and S. Miyachi. 1980. Cycling assay for nicotinamide adenine dinucleotides. Methods in Enzymology 69:465–70.
  • Meng, H., S. Hua, I. H. Shamsi, G. Jilani, Y. Li, and L. Jiang. 2009. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regulation 58 (1):47–59. doi: 10.1007/s10725-008-9351-y.
  • Mihoub, A., A. Chaoui, and E. El Ferjani. 2005. Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). Comptes Rendus Biologies 328 (1):33–41. doi: 10.1016/j.crvi.2004.10.003.
  • Najeeb, U., G. Jilani, S. Ali, M. Sarwar, L. Xu, and W. J. Zhou. 2011. Insight into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. Journal of Hazardous Materials 186 (1):565–74. doi: 10.1016/j.jhazmat.2010.11.037.
  • Noctor, G., G. Queval, and B. Gakière. 2006. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. Journal of Experimental Botany 57 (8):1603–20. doi: 10.1093/jxb/erj202.
  • Petrov, V., J. Hille, B. Mueller-Roeber, and T. S. Gechev. 2015. ROS-mediated abiotic stress-induced programmed cell death in plants. Frontier in Plant Science 69:6. doi: 10.3389/fpls.2015.00069.
  • Potters, G., N. Horemans, and M. A. Jansen. 2010. The cellular redox state in plant stress biology: a charging concept. Plant Physiology and Biochemistry 48 (5):292–300. doi: 10.1016/j.plaphy.2009.12.007.
  • Rahoui, S., C. Ben, A. Chaoui, Y. Martinez, A. Yamchi, M. Rickauer, L. Gentzbittel, and E. El Ferjani. 2014. Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environmental Science and Pollution Research 21 (13):8070–83. doi: 10.1007/s11356-014-2718-x.
  • Rahoui, S., A. Chaoui, C. Ben, M. Rickauer, L. Gentzbittel, and E. El Ferjani. 2015. Effect of cadmium pollution on mobilization of embryo reserves in seedlings of six contrasted Medicago truncatula lines. Phytochemistry 111:98–106. doi: 10.1016/j.phytochem.2014.12.002.
  • Romero-Puertas, M. C., M. Rodríguez-Serrano, F. J. Corpas, M. Gómez, L. A. Del Río, and L. M. Sandalio. 2004. Cadmium-induced subcellular accumulation of O2·- and H2O2 in pea leaves. Plant, Cell and Environment 27 (9):1122–34. doi: 10.1111/j.1365-3040.2004.01217.x.
  • Rubio, M. I., I. Escrig, C. Mart⏧Nez-Cortina, F. J. L⏧Pez-Benet, and A. Sanz. 1994. Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regulation 14 (2):151–7. doi: 10.1007/BF00025217.
  • Ryrie, I. J., and K. J. Scott. 1969. Nicotinate, quinolinate and nicotinamide as precursors in the biosynthesis of nicotinamide-adenine dinucleotide in barley. Biochemical Journal 115 (4):679–85. doi: 10.1042/bj1150679.
  • Sakouhi, L., S. Rahoui, M. Ben Massoud, S. Munemasa, E. El Ferjani, Y. Murata, and A. Chaoui. 2016. Calcium and EGTA alleviate cadmium toxicity in germinating chickpea seeds. Journal of Plant Growth Regulation 35 (4):1064–73. doi: 10.1007/s00344-016-9605-2.
  • Seo, M., E. Nambara, G. Choi, and S. Yamaguchi. 2009. Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology 69 (4):463–72. doi: 10.1007/s11103-008-9429-y.
  • Sfaxi-Bousbih, A., A. Chaoui, and E. El Ferjani. 2010. Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds. Ecotoxicology and Environmental Safety 73 (6):1123–9. doi: 10.1016/j.ecoenv.2010.01.005.
  • Sharaf, A. M., I. I. Farghal, and M. R. Sofy. 2009. Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants. Research Journal of Agriculture and Biological Sciences 5:668–73.
  • Štolfa, I., T. Z. Feiffer, D. Špoljarić, T. Teklić, and Z. Lončarić. 2015. Heavy metal-induced oxidative stress in plants: Response of the antioxidative system. In Reactive oxygen species and oxidative damage in plants under stress. D. K. Gupta, J. M. Palma, and F. J. Corpas, eds. Switzerland: Springer International Publishing, pp. 127–163.
  • Tian, S., L. Lu, J. Zhang, K. Wang, P. Brown, Z. He, J. Liang, and X. Yang. 2011. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84 (1):63–9. doi: 10.1016/j.chemosphere.2011.02.054.
  • Valderrama, R., F. J. Corpas, A. Carreras, M. V. Gómez-Rodríguez, M. Chaki, J. R. Pedrajas, A. Fernández-Ocaña, L. A. Del Río, and J. B. Barroso. 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant, Cell and Environment 29 (7):1449–59. doi: 10.1111/j.1365-3040.2006.01530.x.
  • Van Breusegem, F., and J. F. Dat. 2006. Reactive oxygen species in plant cell death. Plant Physiology 141 (2):384–90. doi: 10.1104/pp.106.078295.
  • Vulkan, R., U. Yermiyahu, U. Mingelgrin, G. Rytwo, and T. B. Kinraide. 2004. Sorption of copper and zinc to the plasma membrane of wheat root. The Journal of Membrane Biology 202 (2):97–104. doi: 10.1007/s00232-004-0722-7.
  • Xu, W., Y. Li, J. He, Q. Ma, X. Zhang, G. Chen, H. Wang, and H. Zhang, 2010. Cd uptake in rice cultivars treated with organic acids and EDTA. Journal of Environmental Sciences 22 (3):441–7. doi: 10.1016/S1001-0742(09)60127-3.
  • Zaheer, I. E., S. Ali, M. Rizwan, M. Farid, M. B. Shakoor, R. A. Gill, U. Najeeb, N. Iqbal, and R. Ahmad. 2015. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicology and Environmental Safety 120:310–7. doi: 10.1016/j.ecoenv.2015.06.020.
  • Zawaski, C., and V. B. Busov. 2014. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. Plos One 9 (1):e86217. doi: 10.1371/journal.pone.0086217.
  • Zhao, Z., X. Hu, and C. W. Ross. 1987. Comparison of tissue preparation methods for assay of nicotinamide coenzymes. Plant Physiology 84 (4):987–8. doi: 10.1104/pp.84.4.987.
  • Zhu, X. F., T. Jiang, Z. W. Wang, G. J. Lei, Y. Z. Shi, G. X. Li, and S. J. Zheng. 2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Journal of Hazardous Materials 239–240:302–7. doi: 10.1016/j.jhazmat.2012.08.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.