1,133
Views
73
CrossRef citations to date
0
Altmetric
Reviews

Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture

, , &
Pages 1402-1415 | Received 13 Dec 2016, Accepted 26 Nov 2018, Published online: 23 May 2019

References

  • Abd El-Azeem, S. A. M., M. W. M. Elwan, J. K. Sung, and Y. S. Ok. 2012. Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Communications in Soil Science and Plant Analysis 43:1303–15. doi: 10.1080/00103624.2012.666305.
  • Abogadallah, G. M. 2010. Antioxidative defense under salt stress. Plant Signaling & Behavior 5 (4):369–74.
  • Albacete, A., M. E. Ghanem, C. Martínez-Andújar, M. Acosta, J. Sánchez-Bravo, V. Martínez, S. Lutts, I. C. Dodd, and F. Pérez-Alfocea. 2008. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 59 (15):4119–31. doi: 10.1093/jxb/ern251.
  • Ali, S. Z., V. Sandhya, and L. V. Rao. 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology 64 (2):493–502. doi: 10.1007/s13213-013-0680-3.
  • Arkhipova, T. N., E. Prinsen, S. U. Veselov, E. V. Martinenko, A. I. Melentiev, and G. R. Kudoyarova. 2007. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil 292 (1–2):305–15. doi: 10.1007/s11104-007-9233-5.
  • Arshad, M., M. Saleem, and S. Hussain. 2007. Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Biotechnology 25 (8):356–62. doi: 10.1016/j.tibtech.2007.05.005.
  • Arzanesh, M. H., H. A. Alikhani, K. Khavazi, H. A. Rahimian, and M. Miransari. 2011. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology 27 (2):197–205. doi: 10.1007/s11274-010-0444-1.
  • Bacilio, M., H. Rodriguez, and M. Moreno, J.-P. Hernandez, and Y. Bashan. 2004. Mitigation of salt stress in wheat seedling by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils 40:188–93.
  • Barriuso, J., B. Ramos Solano, and M. F. Gutierrez. 2008. Protection against pathogen and salt stress by four plants growth-promoting Rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98 (6):666–72. doi: 10.1094/PHYTO-98-6-0666.
  • Bartels, D., and R. Sunkar. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24 (1):23–58. doi: 10.1080/07352680590910410.
  • Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84 (1):11–8. doi: 10.1007/s00253-009-2092-7.
  • Bharti, N., D. Yadav, D. Barnawal, D. Maji, and A. Kalra. 2013. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology & Biotechnology 29 (2):379–87. doi: 10.1007/s11274-012-1192-1.
  • Bleecker, A. B., and H. Kende. 2000. Ethylene: A gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1–18. doi: 10.1146/annurev.cellbio.16.1.1.
  • Bothe, H. 2012. Arbuscular mycorrhiza and salt tolerance of plants. Symbio 58 (1–3):7–16. doi: 10.1007/s13199-012-0196-9.
  • Casimiro, I., A. Marchant, R. P. Bhalerao, T. Beeckman, S. Dhooge, R. Swarup, N. Graham, D. Inzé, G. Sandberg, P. J. Casero, and M. Bennett. 2001. Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell 13 (4):843–52.
  • Chandrasekaran, M., S. Boughattas, S. Hu, S.-H. Oh, and T. Sa. 2014. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24 (8):611–25. doi: 10.1007/s00572-014-0582-7.
  • Charudhry, T. M., W. J. Hayes, A. G. Khan, and C. S. Khoo. 1998. Phytoremediation—Focusing on accumulator plants that remediate metal-contaminated soils. Australasian Journal of Ecotoxicology 4:37–51.
  • Cheng, Z., B. P. Duncker, B. J. McConkey, and B. R. Glick. 2008. Transcriptional regulation of ACC deaminase gene expression in Pseudomonas putida UW4. Canadian Journal of Microbiology 54 (2):128–36. doi: 10.1139/w07-128.
  • Cherif, J., N. Derbel, M. Nakkach, H. Bergmann, F. Jemal, and Z. B. Lakhdar. 2010. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. Journal of Photochemistry and Photobiology 101 (3):332–9. doi: 10.1016/j.jphotobiol.2010.08.005.
  • Creus, C. M., R. J. Sueldo, and C. A. Barassi. 1997. Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry 35:939–44.
  • Dardanelli, M. S., F. J. Fernandez de Cordoba, M. R. Espuny, M. A. Rodriguez Carvajal, M. E. Soria Diaz, A. M. Gil Serrano, Y. Okon, and M. Megias. 2008. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry 40 (11):2713–21. doi: 10.1016/j.soilbio.2008.06.016.
  • Dodd, I. C., A. A. Belimov, W. Y. Sobeih, V. I. Safronova, D. Grierson, and W. J. Davies. 2010. Will modifying plant ethylene status improve plant productivity in water limited environments? New Directions for a Diverse Planet: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. www.cropscience.org.au/icsc2004/poster/1/3/4/510/doddicref.htm.
  • Etesami, H., H. Mirseyed Hosseini, and H. A. Alikhani. 2007. Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants 20:425–34.
  • Falkenmark, M. 2013. Growing water scarcity in agriculture: Future challenge to global water security. Philosophical Transactions of the Royal Society A 371 (2002):20120410. doi: 10.1098/rsta.2012.0410.
  • Farwell, A. J., S. Vesely, V. Nero, H. Rodriguez, K. McCormack, S. Shah, D. G. Dixon, and B. R. Glick. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal contaminated field site. Environmental Pollution 147 (3):540–5. doi: 10.1016/j.envpol.2006.10.014.
  • Fasciglione, G., E. M. Casanovas, A. Yommi, R. J. Sueldo, and C. A. Barassi. 2012. Azospirillum improves lettuce growth and transplant under saline conditions. Journal of the Science of Food and Agriculture 92 (12):2518–23. doi: 10.1002/jsfa.5661.
  • Gajdos, E., L. Lévai, S. Veres, and B. Kovács. 2012. Effects of biofertilizers on maize and sunflower seedlings under cadmium stress. Communications in Soil Science and Plant Analysis 43 (1–2):272–9. doi: 10.1080/00103624.2011.638591.
  • Ghanem, M. E., A. Albacete, A. C. Smigocki, I. Frébort, H. Pospísilová, C. Martínez-Andújar, M. Acosta, J. Sánchez-Bravo, S. Lutts, I. C. Dodd, and F. Pérez-Alfocea. 2011. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 62 (1):125–40. doi: 10.1093/jxb/erq266.
  • Ghnaya, A. B., A. Hourmant, M. Couderchet, M. Branchard, and G. Charles. 2011. Modulation of Zn-induced oxidative stress, polyamine content and metal accumulation in rapeseed (Brassica napus cv. Jumbo) regenerated from trans-versal thin cell layers in the presence of zinc. International Research Journal of Biotechnology 2:62–71.
  • Gomes, M., D. Duarte, M. M. Carneiro, L. C. Barreto, M. Carvalho, A. M. Soares, L. R. G. Guilherme, and Q. S. Garcia. 2013. Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiology and Biochemistry 67:1–6. doi: 10.1016/j.plaphy.2013.02.018.
  • Grichko, V. P., B. Filby, and B. R. Glick. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb and Zn. Journal of Biotechnology 81 (1):45–53.
  • Gupta, B., G. Pathak, and N. Pandey. 2011. Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress. Russian Journal of Plant Physiology 58 (1):85–91. doi: 10.1134/S1021443711010079.
  • Gururani, M., C. Upadhyaya, V. Baskar, J. Venkatesh, A. Nookaraju, and S. Park. 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation 32 (2):245–58. doi: 10.1007/s00344-012-9292-6.
  • He, Y., H. Y. Chen, J. Hou, and Y. Li. 2010. Indene − C60 bisadduct: A new acceptor for high-performance polymer solar cells. Journal of the American Chemical Society 132 (4):1377–82. doi: 10.1021/ja908602j.
  • Hontzeas, N., J. Zoidakis, B. R. Glick, and M. M. Abu-Omar. 2004. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: A key enzyme in bacterial plant growth promotion. Biochimica et Biophysica Acta 1703 (1):11–9. doi: 10.1016/j.bbapap.2004.09.015.
  • Hussain, T. M., T. Chandrasekhar, M. Hazara, Z. Sultan, B. K. Saleh, and G. R. Gopal. 2008. Recent advances in salt stress biology – A review. Biotechnology and Molecular Biology Reviews 3:8–13.
  • Islam, F., T. Yasmeen, Q. Ali, S. Ali, M. S. Arif, S. Hussain, and H. Rizvi. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicology and Environmental Safety 104:285–93. doi: 10.1016/j.ecoenv.2014.03.008.
  • Jha, B. K., M. G. Pragash, J. Cletus, G. Raman, and N. Sakthivel. 2009. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World Journal of Microbiology and Biotechnology 25 (4):573–81. doi: 10.1007/s11274-008-9925-x.
  • John, R., P. Ahmad, K. Gadgil, and S. Sharma. 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant, Soil and Environment 54 (6):262–70. doi: 10.17221/2787-PSE.
  • Kaneko, T., Y. Nakamura, S. Sato, K. Minamisawa, T. Uchiumi, S. Sasamoto, A. Watanabe, K. Idesawa, M. Iriguchi, K. Kawashima, et al. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research 9 (6):189–97.
  • Kang, S., A. L. Khan, M. Waqas, Y. H. You, J. H. Kim, J. G. Kim, M. Hamayun, and I. J. Lee. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions 9 (1):673–82. doi: 10.1080/17429145.2014.894587.
  • Karlidag, H., A. Esitken, E. Yildirim, M. F. Donmez, and M. Turan. 2010. Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability, and ionic composition of strawberry under saline conditions. Journal of Plant Nutrition 39:34–45. doi: 10.1080/01904167.2011.531357.
  • Kasim, W. A., M. E. Osman, M. N. Omar, I. A. Abd El-Daim, S. Bejai, and J. Meijer. 2013. Control of drought stress in wheat using plant growth-promoting bacteria. Journal of Plant Growth Regulation 32 (1):122–30. doi: 10.1007/s00344-012-9283-7.
  • Kausar, R., and S. M. Shahzad. 2006. Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. Journal of Agriculture and Social Sciences 2:216–8.
  • Kavamura, V. N., S. N. Santos, J. L. da Silva, M. M. Parma, L. A. Ávila, A. Visconti, T. D. Zucchi, R. G. Taketani, F. D. Andreote, and I. S. de Melo. 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research 168 (4):183–91. doi: 10.1016/j.micres.2012.12.002.
  • Kepinski, S. 2006. Integrating hormone signaling and patterning mechanisms in plant development. Current Opinion in Plant Biology 9 (1):28–34. doi: 10.1016/j.pbi.2005.11.001.
  • Kohler, J., F. Caravaca, and A. Roldán. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biology and Biochemistry 42 (3):429–34. doi: 10.1016/j.soilbio.2009.11.021.
  • Kumar, A., B. R. Maurya, and R. Raghuwanshi. 2014. Isolation and Characterization of PGPR and their effect on growth, yield and Nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology 3 (4):121–8. doi: 10.1016/j.bcab.2014.08.003.
  • Kumar, A., B. R. Maurya, R. Raghuwanshi, V. S. Meena, and M. T. Islam. 2017. Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (T. aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. Journal of Plant Growth Regulation 36 (3):608–17. doi: 10.1007/s00344-016-9663-5.
  • Lu, Y., Y. Li, J. Zhang, Y. Xiao, Y. Yue, L. Duan, M. Zhang, and Z. Li. 2013. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One 8:52126.
  • Ma, W., F. C. Guinel, and B. R. Glick. 2003. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology 69 (8):4396–402.
  • Mayak, S., T. Tirosh, and B. R. Glick. 2004a. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sciences 166 (2):525–30. doi: 10.1016/j.plantsci.2003.10.025.
  • Mayak, S., T. Tirosh, and B. R. Glick. 2004b. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42 (6):565–72. doi: 10.1016/j.plaphy.2004.05.009.
  • Mohammad, A., and B. Mittra. 2013. Effects of inoculation with stress adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science 59 (2):173–83. doi: 10.1080/03650340.2011.610029.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Nadgorska-Socha, A., A. Kafel, M. Kandziora-Ciupa, J. Gospodarek, and A. Zawisza-Raszka. 2013. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environmental Science and Pollution Research International 20 (2):1124–34. doi: 10.1007/s11356-012-1191-7.
  • Nakbanpote, W., N. Panitlurtumpai, A. Sangdee, N. Sakulpone, P. Sirisom, and A. Pimthong. 2014. Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: Identification and effect on rice under saline conditions. Journal of Plant Interactions 9 (1):379–87. doi: 10.1080/17429145.2013.842000.
  • Naveed, M., B. Mitter, T. G. Reichenauer, K. Wieczorek, and A. Sessitsch. 2014. Increased drought stress resilience of maize through endophyticcolonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany 97:30–9. doi: 10.1016/j.envexpbot.2013.09.014.
  • Nia, S. H., M. J. Zarea, F. Rejali, and A. Varma. 2012. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. Journal of the Saudi Society of Agricultural Sciences 11 (2):113–21. doi: 10.1016/j.jssas.2012.02.001.
  • Nie, L., S. Shah, A. Rashid, G. I. Burd, D. G. Dixon, and B. R. Glick. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry 40 (4):355–61. doi: 10.1016/S0981-9428(02)01375-X.
  • Noctor, G., and C. H. Foyer. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49 (1):249–79. doi: 10.1146/annurev.arplant.49.1.249.
  • Norrieh, B., M. H. Arzanesh, G. Mahlegha, and S. Maryam. 2013. The effect of plant growth promoting Rhizobacteria on growth promoters, antioxidants enzymes and micro elements on canola under on salt stress. Journal of Applied Environmental and Biological Sciences 3:17–27.
  • Nukui, N., K. Minamisawa, S. I. Ayabe, and T. Aoki. 2006. Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Applied and Environmental Microbiology 72 (7):4964–9. doi: 10.1128/AEM.02745-05.
  • Perez-Alfocea, F., A. Albacete, M. E. Ghanem, and I. C. Dodd. 2010. Hormonal regulation of source–sink relations to maintain crop productivity under salinity: A case study of root-to-shoot signalling in tomato. Functional Plant Biology 37:592–603. doi: 10.1071/FP10012.
  • Pierik, R., R. Sasidharan, and L. Voesenek. 2007. Growth control by ethylene: Adjusting phenotypes to the environment. Journal of Plant Growth Regulation 26 (2):188–200. doi: 10.1007/s00344-006-0124-4.
  • Qudsaia, B., Y. Noshinil, B. Asghari, Z. Nadia, A. Abida, and H. Fayazul. 2013. Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pakistan Journal of Botany 45:13–20.
  • Rajkumar, M., M. Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Critical Reviews in Biotechnology 29 (2):120–30. doi: 10.1080/07388550902913772.
  • Rakshapal, S., K. S. Sumit, P. P. Rajendra, and K. Alok. 2013. Technology for improving essential oil yield of Ocimum basilicum L. (Sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Industrial Crops and Products 45:335–42.
  • Rojas-Tapias, D., A. Moreno-Galván, S. Pardo-Díaz, M. Obando, D. Rivera, and R. Bonilla. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology 61:264–72. doi: 10.1016/j.apsoil.2012.01.006.
  • Sachs, T. 2005. Auxin’s role as an example of the mechanisms of shoot/root relations. Plant and Soil 268 (1):13–9. doi: 10.1007/s11104-004-0173-z.
  • Saghafi, K., J. Ahmadi, A. Asgharzadeh, and S. Bakhtiari. 2013. The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. International Journal of Advanced Biological and Biomedical Research 1:421–31.
  • Saharan, B. S., and V. Nehra. 2011. Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medical Research 20:1–30.
  • Schubert, S., A. Neubert, A. Schierholt, A. Sumer, and C. Zorb. 2009. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Sciences 177 (3):196–202. doi: 10.1016/j.plantsci.2009.05.011.
  • Sergeeva, E., S. Shah, and B. R. Glick. 2006. Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World Journal of Microbiology and Biotechnology 22 (3):277–82. doi: 10.1007/s11274-005-9032-1.
  • Shafi, M., J. Bakhat, M. J. Khan, M. A. Khan, and S. Anwar. 2010. Effect of salinity on yield and ion accumulation of wheat genotypes. Pakistan Journal of Botany 42:4113–21.
  • Shannon, M. C. 1997. Adaptation of plants to salinity. Advances in Agronomy 60:75–120.
  • Sharp, R. G., L. Chen, and W. J. Davies. 2011. Inoculation of growing media with the rhizobacterium Variovorax paradoxus 5C-2 reduces unwanted stress responses in hardy ornamental species. Scientia Horticulturae 129 (4):804–11. doi: 10.1016/j.scienta.2011.03.016.
  • Shetty, K. G., B. A. D. Hetrick, D. A. H. Figge, and A. P. Schwab. 1994. Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environmental Pollution 86 (2):181–8. doi: 10.1016/0269-7491(94)90189-9.
  • Siddikee, M. A., B. R. Glick, P. S. Chauhan, W. J Yim, and T. Sa. 2011. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1- aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry 49 (4):427–34. doi: 10.1016/j.plaphy.2011.01.015.
  • Stearns, J. C., S. Saleh, B. M. Greenberg, D. G. Dixon, and B. R. Glick. 2005. Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiology and Biochemistry: PPB 43 (7):701–8. doi: 10.1016/j.plaphy.2005.05.010.
  • Stefan, M., N. Munteanu, V. Stoleru, M. Mihasan, and L. Hritcu. 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae 151:22–9. doi: 10.1016/j.scienta.2012.12.006.
  • Suarez, N., and E. Medina. 2005. Salinity effect on plant growth and leaf demography of the mangrove, Avicennia germinans L. Trees 19:721–7.
  • Taniguchi, J., H. Hemmi, K. Tanahashi, N. Amano, T. Nakayama, and T. Nishino. 2000. Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Journal of Microbiology and Biotechnology 54 (4):581–8. doi: 10.1007/s002530000415.
  • Tank, N., and M. Saraf. 2010. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions 5 (1):51–8. doi: 10.1080/17429140903125848.
  • Tao, G. C., S. J. Tian, M. Y. Cai, and G. H. Xie. 2008. Phosphate-solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18 (4):515–23. doi: 10.1016/S1002-0160(08)60042-9.
  • Tester, M., and R. Davenport. 2003. Naþ tolerance and Naþ transport in higher plants. Annals of Botany 91 (5):503–27.
  • Tewari, S., and N. K. Arora. 2014. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Current Microbiology 69 (4):484–94. doi: 10.1007/s00284-014-0612-x.
  • Upadhyay, S. K., and D. P. Singh. 2015. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology 17 (1):288–93. doi: 10.1111/plb.12173.
  • Upadhyay, S. K., J. S. Singh, A. K. Saxena, and D. P. Singh. 2012. Impact of PGPR inoculation on growth and antioxidants status of wheat under saline conditions. Plant Biology 14 (4):605–11. doi: 10.1111/j.1438-8677.2011.00533.x.
  • Upadhyay, S. K., J. S. Singh, and D. P. Singh. 2011. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21 (2):214–22. doi: 10.1016/S1002-0160(11)60120-3.
  • Vardharajula, S., S. Z. Ali, M. Grover, G. Reddy, and V. Bandi. 2011. Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions 6 (1):1–14. doi: 10.1080/17429145.2010.535178.
  • Verma, J. P., J. Yadav, K. N. Tiwari, and A. Kumar. 2013. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecological Engineering 51:282–6. doi: 10.1016/j.ecoleng.2012.12.022.
  • Vinocur, B., and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology 16 (2):123–32. doi: 10.1016/j.copbio.2005.02.001.
  • Vivas, A., A. Marulanda, J. M. Ruiz-Lozano, J. M. Barea, and R. Azcon. 2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13 (5):249–56. doi: 10.1007/s00572-003-0223-z.
  • Vivas, A., B. Biro, J. Ruiz-Lozano, J. Barea, and R. Azcon. 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62 (9):1523–33. doi: 10.1016/j.chemosphere.2005.06.053.
  • Vivekananthan, R., M. Ravi, A. Ramanathan, and R. Samiyappan. 2004. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology 20 (3):235–44. doi: 10.1023/B:WIBI.0000023826.30426.f5.
  • Wang, C., E. Knill, B. R. Glick, and G. Defago. 2000. Effect of transferring 1-aminocyclopropoane-1-carboxylic acid (Acc) deaminase genes into Pseudomonas fluorescens strain CH40 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Canadian Journal of Microbiology 46 (10):898–907. doi: 10.1139/w00-071.
  • Wani, P. A., A. Zaidi, and M. S. Khan. 2009. Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremediation Journal 13 (3):121–9. doi: 10.1080/10889860903124289.
  • Warren, G. F. 1998. Spectacular increases in crop yields in the twentieth century. Weed Technology 12 (4):752–60. doi: 10.1017/S0890037X00044663.
  • Wu, Q. S., Y. N. Zou, and X. H. He. 2013. Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Scientia Horticulturae 160:366–74. doi: 10.1016/j.scienta.2013.06.011.
  • Wu, Z., Y. Peng, L. Guo, and C. Li. 2014. Root colonization of encapsulated Klebsiella oxytocaRs-5 on cotton plants and its promoting growth performance under salinity stress. European Journal of Soil Biology 60:81–7. doi: 10.1016/j.ejsobi.2013.11.008.
  • Yang, J., J. W. Kloepper, and C. M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science 14 (1):1–3. doi: 10.1016/j.tplants.2008.10.004.
  • Yildirim, E., M. F. Donmez, and M. Turan. 2008. Use of bioinoculants in ameliorative effects on radish plants under salinity stress. Journal of Plant Nutrition 31:2059–74. doi: 10.1080/01904160802446150.
  • Yildirim, E., A. G. Taylor, and T. D. Spittler. 2006. Ameliorative effects of biological treatments on growth of squash plants under salt stress. Scientia Horticulturae 111 (1):1–6. doi: 10.1016/j.scienta.2006.08.003.
  • Zahir, A. Z., M. Arshad, and W. T. Frankenberger, Jr. 2004. Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy 81:97–168.
  • Zahir, A. Z., U. Ghani, M. Naveed, S. M. Nadeem, and H. N. Asghar. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt stressed conditions. Archives of Microbiology 191 (5):415–24. doi: 10.1007/s00203-009-0466-y.
  • Zahir, Z. A., A. Munir, H. N. Asghar, B. Shaharoona, and M. Arshad. 2008. Effectiveness of Rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology 18 (5):958–63.
  • Zarea, M. J., S. Hajinia, N. Karimi, E. M. Goltapeh, F. Rejali, and A. Varma. 2012. Effect of Piriformospora indicaand Azospirillumstrains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry 45:139–46. doi: 10.1016/j.soilbio.2011.11.006.
  • Zhang, H., M.-S. Kim, Y. Sun, S. E. Dowd, H. Shi, and P. W. Paré. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions 21 (6):737–44. doi: 10.1094/MPMI-21-6-0737.
  • Zhang, Y. H. P., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances 24:452–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.