340
Views
7
CrossRef citations to date
0
Altmetric
Articles

Elevated carbon dioxide and nitrogen supply affect photosynthesis and nitrogen partitioning of two wheat varieties

, , , &
Pages 1290-1300 | Received 11 May 2018, Accepted 03 Aug 2018, Published online: 20 May 2019

References

  • Ainsworth, E. A., and S. P. Long. 2004. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165 (2):351–72. doi: 10.1111/j.1469-8137.2004.01224.x.
  • Allard, V., P. C. D. Newton, M. Lieffering, J. F. Soussana, R. A. Carran, and C. Matthew. 2005. Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root growth rate and turnover. Plant and Soil 276 (1–2):49–60. doi: 10.1007/s11104-005-5675-9.
  • Aranjuelo, I., L. Cabrera-Bosquet, R. Morcuende, J. C. Avice, S. Nogués, J. L. Araus, R. Martínez-Carrasco, and P. Pérez. 2011. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? Journal of Experimental Botany 62 (11):3957–69. doi: 10.1093/jxb/err095.
  • Aranjuelo, I., A. Sanz-Sáez, I. Jauregui, J. J. Irigoyen, J. L. Araus, M. Sánchez-Díaz, and G. Erice. 2013. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. Journal of Experimental Botany 64 (7):1879–92. doi: 10.1093/jxb/ert081.
  • Benlloch-Gonzalez, M., R. Bochicchio, J. Berger, H. Bramley, and J. A. Palta. 2014. High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crop Research 165 (3):71–9. doi: 10.1016/j.fcr.2014.04.008.
  • Bloom, A. J., J. S. Asensio, L. Randall, S. Rachmilevitch, A. B. Cousins, and E. A. Carlisle. 2012. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93 (2):355–67. doi: 10.1890/11-0485.1.
  • Bloom, A. J., M. Burger, J. S. R. Asensio, and A. Cousins. 2010. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328 (5980):899–903. doi: 10.1126/science.1186440.
  • Bloom, A. J., M. Burger, B. A. Kimball, and P. J. Pinter. 2014. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nature Climate Change 4 (6):477–80. doi: 10.1038/nclimate2183.
  • Butterly, C. R., R. Armstrong, D. L. Chen, and C. X. Tang. 2015. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil 391 (1–2):367–82.
  • Carlisle, E., S. Myers, V. Raboy, and A. Bloom. 2012. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Frontiers in Plant Science 3 (4):195.
  • Dier, M., R. Meinen, M. Erbs, L. Kollhorst, C. K. Baillie, D. Kaufholdt, M. Kücke, H. J. Weigel, and R. Hänsch. 2018. Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation and growth of winter wheat under nitrate and ammonium fertilization. Global Change Biology 24:40–54.
  • Farage, P. K., I. F. McKee, and S. P. Long. 1998. Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2. Plant Physiology 118 (2):573–80.
  • Inauen, N., C. Korner, and E. Hiltbrunner. 2012. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Global Change Biology 18 (3):985–99. doi: 10.1111/j.1365-2486.2011.02584.x.
  • IPCC 2013. Summary for policymakers. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, ed. T. F. Stocker, D. Qin, G-K. Plattner, M. Tignor, S. K. Alle, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 3–29. Cambridge, UK: Cambridge University Press.
  • Katul, G., S. Manzoni, S. Palmroth, and R. Oren. 2010. A stomatal optimization theory describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105 (3):431–42. doi: 10.1093/aob/mcp292.
  • Kumari, S., M. Agrawal, and S. Tiwari. 2013. Impact of elevated CO2 and ozone on Beta vulgaris L.: Pigments, metabolites, antioxidants growth and yield. Environmental Pollution 174:279–88. doi: 10.1016/j.envpol.2012.11.021.
  • Langley, J. A., and J. P. Megonigal. 2010. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466 (7302):96–9. doi: 10.1038/nature09176.
  • Larsen, K. S., L. C. Andresen, C. Beier, S. Jonasson, K. R. Albert, P. E. R. Ambus, M. F. Arndal, M. S. Carter, S. Christensen, M. Holmstrup., et al. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology 17 (5):1884–99. doi: 10.1111/j.1365-2486.2010.02351.x.
  • Lekshmy, S., V. Jain, S. Khetarpal, and R. Pandey. 2013. Inhibition of nitrate uptake and assimilation in wheat seedlings grown under elevated CO2. Indian Journal of Plant Physiology 18 (1):23–9. doi: 10.1007/s40502-013-0010-6.
  • Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort. 2004. Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology 55 (1):591–628. doi: 10.1146/annurev.arplant.55.031903.141610.
  • Ma, L., J. G. Zhu, Z. B. Xie, G. Liu, Q. Zeng, and Y. Han. 2007. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant and Soil 294 (1–2):137–46. doi: 10.1007/s11104-007-9241-5.
  • McCarthy, H. R., R. Oren, K. H. Johnsen, A. G. Budynek, S. G. Pritchard, C. W. Cook, S. L. LaDeau, R. B. Jackson, and A. C. Finzi. 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: Interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytologist 185 (2):514–28. doi: 10.1111/j.1469-8137.2009.03078.x.
  • Mcgrath, J. M., and D. B. Lobell. 2013. Reduction of transpiration and altered nutrient allocation contribute to the nutrient decline of crops grown in elevated CO2 concentrations. Plant, Cell & Environment 36 (3):697–705. doi: 10.1111/pce.12007.
  • Myers, S. S., A. Zanobetti, I. Kloog, P. Huybers, A. D. B. Leakey, A. J. Bloom, E. Carlisle, L. H. Dietterich, G. Fitzgerald, T. Hasegawa, and N. M. Holbrook. 2014. Increasing CO2 threatens human nutrition. Nature 510 (7503):139–42. doi: 10.1038/nature13179.
  • Novriyanti, E., M. Watanabe, M. Kitao, H. Utsugi, A. Uemura, and T. Koike. 2012. High nitrogen and elevated CO2 effects on the growth, defense and photosynthetic performance of two eucalypt species. Environmental Pollution 170 (8):124–30. doi: 10.1016/j.envpol.2012.06.011.
  • O'leary, G. J., B. Christy, J. Nuttall, N. Huth, D. Cammarano, C. Stöckle, B. Basso, I. Shcherbak, G. Fitzgerald, and Q. Luo. 2015. Response of wheat growth, grain yield and water use to elevated CO2 under a free-air CO2 enrichment (FACE) experiment and modeling in a semi-arid environment. Global Change Biology 21 (7):2670–86. doi: 10.1111/gcb.12830.
  • Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, and R. Christ. 2014. Climate change 2014: Synthesis report. Paper presented at the Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151. Geneva, Switzerland: IPCC.
  • Pal, M., L. S. Rao, V. Jain, A. C. Srivastava, R. Pandey, A. Raj, and K. P. Singh. 2005. Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biologia Plantarum 49 (3):467–70. doi: 10.1007/s10535-005-0031-8.
  • Pérez, P., R. Morcuende, I. Martı́n del Molino, and R. Martı́nez-Carrasco. 2005. Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. Environmental and Experimental Botany 53 (1):13–27. doi: 10.1016/j.envexpbot.2004.02.008.
  • Pleijel, H., and Uddling, J. 2012. Yield vs quality trade-offs for wheat in response to carbon dioxide and ozone. Global Change Biology 18:596–605.
  • Reich, P. B., and Hobbie, S. E. 2013. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change 3 (3):278–82. doi: 10.1038/nclimate1694.
  • Reich, P. B., S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West, D. Tilman, J. M. H. Knops, S. Naeem, and J. Trost. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440 (7086):922–5. doi: 10.1038/nature04486.
  • Ruizvera, U. M., A. P. D. Souza, S. P. Long, and D. R. Ort. 2017. The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum L. at elevated CO2 concentration. Frontiers in Plant Science 8:998.
  • Sanz-Sáez, A., G. Erice, I. Aranjuelo, S. Nogués, J. J. Irigoyen, and M. Sánchez-Díaz. 2010. Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. Journal of Plant Physiology 167 (18):1558–65. doi: 10.1016/j.jplph.2010.06.015.
  • Seneweera, S. 2011. Reduce nitrogen allocation to expanding leaf blades leads to suppression of Ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis and photosynthetic acclimation to elevated CO2 in rice. Photosynthetica 49 (1):145–8. doi: 10.1007/s11099-011-0006-2.
  • Seneweera, S., A. Makino, T. Mae, and A. Basra. 2005. Response of rice to p(CO2) enrichment: The relationship between photosynthesis and nitrogen metabolism. Journal of Crop Improvement 13 (1–2):31–53. doi: 10.1300/J411v13n01_03.
  • Seneweera, S. P., and J. P. Conroy. 2005. Enhanced leaf elongation rates of wheat at elevated CO2: Is it related to carbon and nitrogen dynamics within the growing leaf blade? Environmental and Experimental Botany 54 (2):174–81. doi: 10.1016/j.envexpbot.2004.07.002.
  • Seneweera, S. P., O. Ghannoum, and J. P. Conroy. 2001. Root and shoot factors contribute to the effect of drought on photosynthesis and growth of the C4 grass Panicum Coloratum at elevated CO2 partial. Australian Journal of Plant Physiology 28 (6):451–60.
  • Seneweera, S. P., O. Ghannoum, J. P. Conroy, K. Ishimaru, M. Okada, M. Lieffering, H. Y. Kim, and K. Kobayashi. 2002. Changes in source-sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (face). Functional Plant Biology 29 (8):947. doi: 10.1071/PP01250.
  • Taub, D. R., and X. Wang. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology 50 (11):1365–74. doi: 10.1111/j.1744-7909.2008.00754.x.
  • Thilakarathne, C. L., S. Tausz-Posch, K. Cane, R. M. Norton, G. J. Fitzgerald, M. Tausz, and S. Seneweera. 2015. Intraspecific variation in leaf growth of wheat (Triticum aestivum) under Australian Grain Free Air CO2 Enrichment (AGFACE): Is it regulated through carbon and/or nitrogen supply? Functional Plant Biology 42 (3):299–308. doi: 10.1071/FP14125.
  • Vicente, R., P. Pérez, R. Martínez-Carrasco, R. Feil, J. E. Lunn, M. Watanabe, S. Arrivault, M. Stitt, R. Hoefgen, and R. Morcuende. 2016. Metabolic and transcriptional analysis of durum wheat responses to elevated CO2 at low and high nitrate supply. Plant and Cell Physiology 57 (10):2133. doi: 10.1093/pcp/pcw131.
  • Vicente, R., P. Perez, R. Martinez-Carrasco, E. Gutierrez, and R. Morcuende. 2015a. Nitrate supply and plant development influence nitrogen uptake and allocation under elevated CO2 in durum wheat grown hydroponically. Acta Physiologiae Plantarum 37 (6):114.
  • Vicente, R., P. Pérez, R. Martínez-Carrasco, and R. Morcuende. 2017. Improved responses to elevated CO2 in durum wheat at a low nitrate supply associated with the upregulation of photosynthetic genes and the activation of nitrate assimilation. Plant Science 260:119–28. doi: 10.1016/j.plantsci.2017.04.009.
  • Vicente, R., P. Perez, R. Martinez-Carrasco, B. Usadel, S. Kostadinova, and R. Morcuende. 2015b. Quantitative RT-PCR platform to measure transcript levels of C and N metabolism-related genes in durum wheat: Transcript profiles in elevated [CO2] and high temperature at different nitrogen supplies. Plant and Cell Physiology 56 (8):1556–73. doi: 10.1093/pcp/pcv079.
  • Weigel, H. J., and R. Manderscheid. 2012. Crop growth responses to free air CO2 enrichment and nitrogen fertilization: Rotating barley, ryegrass, sugar beet and wheat. European Journal Agronomy 43 (3):97–107. doi: 10.1016/j.eja.2012.05.011.
  • Zhang, X. C., X. F. Yu, and Y. F. Ma. 2013. Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves. Photosynthetica 51 (4):593–602. doi: 10.1007/s11099-013-0059-5.
  • Zhao, X., Z. Mao, and J. Xu. 2010. Gas exchange, chlorophyll and growth responses of Betula Platyphylla seedlings to elevated CO2 and nitrogen. International Journal of Biological 2 (1):143–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.