386
Views
16
CrossRef citations to date
0
Altmetric
Articles

Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents

, , &
Pages 1333-1349 | Received 31 May 2018, Accepted 25 Oct 2018, Published online: 24 May 2019

References

  • Abdel-Rahaman, M. A. M., and K. A. Mohamed. 2015. Effect of some soil amendments and foliar spray of salicylic and ascorbic acids on sorghum under saline calcareous soil conditions. International Journal of Soil Science 10 (1):28–36.
  • Akhtar, J., R. Ahmad, M. Ashraf, A. Tanveer, and H. Oraby. 2013. Influence of exogenous application of salicylic acid on salt-stressed mungbean (Vigna radiata): Growth and nitrogen metabolism. Pakistan Journal of Botany 45:119–25.
  • Al‐Harbi. A. R. 1995. Growth and nutrient composition of tomato and cucumber seedlings as affected by sodium chloride salinity and supplemental calcium. Journal of Plant Nutrition 18 (7):1403–16. doi: 10.1080/01904169509364990.
  • Ali, Z. A., M. M. Hussein, and A. M. El-Taher. 2015. Effect of antioxidants on some morphological and anatomical features of maize grown under salinity conditions. International Journal of ChemTech Research 8 (6):389–400.
  • Allen, S. E., H. M. Grimshaw, and A. P. Rowland. 1986. Chemical analysis. In Methods of plant ecology, ed. by P.D. Moore and S. B. Chapman. Blackwell: Oxford.
  • Almodares, A.,. M. R. Hadi, B. Kholdebarin, B. Samedani, and Z. A. Kharazian. 2014. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl- and K + ions in relation to salinity. Journal of Environmental Biology 35 (4):733–9.
  • Amtmann, A., and D. Sanders. 1999. Mechanisms of Na + uptake by plant cells. Advances in Botanical Research 129:75–112.
  • Anschutz, U., D. Becker, and S. Shabala. 2014. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology 171 (9):670–87. doi: 10.1016/j.jplph.2014.01.009.
  • Arfan, M., H. R. Athar, and M. Ashraf. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology 164 (6):685–94. doi: 10.1016/j.jplph.2006.05.010.
  • Asfaw, K. G. 2011. Effects of salinity on seedling biomass production and relative water content of twenty sorghum (Sorghum bicolor L. Moench) accessions. Asian Journal of Agricultural Sciences 17 (3):242–9.
  • Asmaa, R., M. Ahmed, M. Karima, A. Magda, and M. Hoda. 2017. Role of salicylic acid to improve physiological characters and bio-chemical markers of soybean (Glycine max L.) under sea salt stress. International Journal of Environmental Research 11 (4):547–56. doi: 10.1007/s41742-017-0048-9.
  • Awol Assefa, T., and G. M. Fekadu. 2017. Root and shoot growth responses of sorcoll163/07 and sorcoll141/07 sorghum landraces (Sorghum bicolor L.) Moench to different salt concentration levels. African Journal of Agricultural Research 12 (13):1128–35. doi: 10.5897/AJAR2016.11965.
  • Azooz, M. M., P. Ahmad, and A. M. Youssef. 2011. Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry 3 (14):253–64. doi: 10.5897/ijppb11.052.
  • Baghizdeh, A., Z. Shahba, M. Yosefi, A. Saeedpou, and S. Khosravi. 2012. The study of salicylic acid effect on contained elements as sodium, potassium, iron and zinc in tomato plant (Lycopersicum esculentum Mill) cultivar Rio grand under NaCl salinity stress. International Journal of Agronomy and Plant Production 3:521–6.
  • Bhivare, V. N., and J. D. Nimbalkar. 1984. Salt stress effect on growth and nutrition of French beans. Plant and Soil 80 (1):91–8. doi: 10.1007/BF02232942.
  • Bose, J., O. Babourina, S. Shabala, and Z. Rengel. 2013. Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. Plant and Cell Physiology 54 (7):1093–104. doi: 10.1093/pcp/pct064.
  • Bozcuk, S. 1970. Water and salt relations of statics species with particular reference to the problem of halophytes. University of Sussex UK.
  • Cakmak, I., and E. A. Kirkby. 2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum 133 (4):692–704. doi: 10.1111/j.1399-3054.2007.01042.x.
  • Cowan, J. A. 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 15 (3):225–35.
  • Cramer, G. R., E. Epstein, and A. Läuchli. 1991. Effect of sodium, potassium and calcium on salt-stressed barley. Physiologia Plantarum 81 (2):197–202. doi: 10.1111/j.1399-3054.1991.tb02129.x.
  • Cramer, G. R., E. Epstein, and A. Uchli. 1988. Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. Journal of Experimental Botany 39 (11):1513–22. doi: 10.1093/jxb/39.11.1513.
  • Cramer, G. R., A. Läuchli, and V. S. Polito. 1985. Displacement of Ca2+ by Na + from the plasmalemma of root cells. Journal of Plant Physiology 79 (1):207–11. doi: 10.1104/pp.79.1.207.
  • Dahiya, S. S., and M. Singh. 1976. Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant and Soil 44 (3):697–702. doi: 10.1007/BF00011387.
  • Dashti, A., A. A. Khan, and J. C. Collins. 2009. Effects of salinity on growth, ionic relations and solute content of Sorghum Bicolor (L.) Monench. Journal of Plant Nutrition 32 (7):1219–36. doi: 10.1080/01904160902945333.
  • Desoky, E.-S., A.-R. Merwad, and M. Merwad. 2015. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. Journal of Agricultural Science 7 (10):203–217.
  • Doering, H. W., G. Schulze, and P. Roscher. 1984. Salinity effects on the micronutrient supply of plants differing in salt resistance. Paper read at Proceedings of the 6th International Colloquium for the optimization of plant nutrition, at France.
  • El-Hedek, K. S. 2013. Effect of foliar applications of salicylic acid and potassium silicate on tolerance of wheat plants to soil salinity. Journal of Soil Sciences and Agricultural Engineering 4 (3):335–57.
  • El-Khallal, S. M., T. A. Hathout, A. E. A. Ashour, and A. A. A. Kerrit. 2009. Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences 5 (4):380–90.
  • El-Samad, H. M. A., and M. A. K. Shaddad. 1997. Salt tolerance of soybean cultivars. Biologia Plantarum 39 (2):263–9. doi: 10.1023/A:1000309407275.
  • Essa, T. A. 2002. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science 188 (2):86–93. doi: doi: 10.1046/j.1439-037X.2002.00537.x.
  • Farhangi-Abriz, S., and K. Ghassemi-Golezani. 2018. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety 147:1010–6. doi:201702210126293640. doi: 10.1016/j.ecoenv.2017.09.070.
  • Führs, H., and J. Gerendás. 2013. The significance of magnesium for crop quality. Plant and Soil 368 (1-2):101–28. doi: 10.1007/s11104-012-1555-2.
  • Gilbert, A. F. 1951. The place of sulfur in plant nutrition. The Botanical Review 17 (9):671–91. doi: 10.1007/BF02879757.
  • Grattan, S. R., and C. M. Grieve. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78 (1-4):127–57. doi: 10.1016/S0304-4238(98)00192-7.
  • Grattan, S. R., and E. V. Maas. 1988. Effect of salinity on phosphate accumulation and injury in soybean. Plant and Soil 109 (1):65–71. doi: 10.1007/BF02197581.
  • Grieve, C. M., and S. Grattan. 1992. Mineral nutrient acquisition and response by plants grown in saline environments. Agriculture, Ecosystems and Environment 38 (4):275–300. doi:0.1201/9780824746728.ch9. doi: 10.1016/0167-8809(92)90151-Z.
  • Gunes, A., A. Inal, M. Alpaslan, F. Eraslan, E. G. Bagci, and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164 (6):728–36. doi: 10.1016/j.jplph.2005.12.009.
  • Gupta, B., and B. Huang. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics1:18. doi: 10.1155/2014/701596.
  • Hanson, W. C. 1950. The photometric determination of phosphorus in fertilizers using the phosphovanadomolybdate complex. Journal of the Science of Food and Agriculture 1 (6):172–173. doi:10.1002/jsfa.2740010604.
  • Hasanuzzaman, M., M. A. Hossain, J. A. T. da Silva, and M. Fujita. 2012. Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In Crop stress and its management: perspectives and strategies, ed. by V. Bandi, A. K. Shanker, C. Shanker and M. Mandapaka. Berlin: Springer.
  • Hasanuzzaman, M., K. Nahar, and M. Fujita. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress, Ed. by P. Ahmad, M. M. Azooz and M. N. V. Prasad, 25–87. New York, NY: Springer New York.
  • Hassan, N. A. K., J. V. Drew, D. Knudsen, and R. A. Olson. 1970. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn. II. Corn (Zea mays L.). Agronomy Journal 62(1):46–8. doi: 10.2134/agronj1970.00021962006200010015x.
  • Helal, H. M., and K. Mengel. 1979. Nitrogen metabolism of young barley plants as affected by NaCl-salinity and potassium. Plant and Soil 51 (4):457–62. doi: 10.1007/BF02277567.
  • Hepler, P. K. 2005. Calcium: a central regulator of plant growth and development. The Plant Cell 17 (8):2142–55. doi: 10.1105/tpc.105.032508.
  • Hermans, C., S. J. Con, J. Chen, Q. Xiao, and N. Verbruggen. 2013. An update on magnesium homeostasis mechanisms in plants. Metallomics 5 (9):1170–83. doi: 10.1039/c3mt20223b.
  • Hermans, C., and N. Verbruggen. 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany 56 (418):2153–61. doi: 10.1093/jxb/eri215.
  • Horváth, E., G. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26 (3):290–300. doi: 10.1007/s00344-007-9017-4.
  • Huang, R-D. 2018. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture 17 (4):739–46. doi: 10.1016/S2095-3119(17)61728-3.
  • Hussein, M. M., A. A. Abdel-Kader, K. A. Kady, R. A. Youssef, and A. K. Alva. 2010. Sorghum response to foliar application of phosphorus and potassium with saline water irrigation. Journal of Crop Improvement 24 (4):324–36. doi: 10.1080/15427528.2010.499042.
  • Hussein, M. M., A. I. Rezk, A. B, El-Nasharty, and H. Mehanna. 2015. Nutritional and growth response of canola plants to salicylic acid under salt stress conditions. International Journal of ChemTech Research 8 (6)574–581.
  • Ioneva, Z. S. 1988. Effect of potassium ion Na + uptake by plants in conditions of chloride salinity. Fiziolo. Rasten 14:42–7.
  • Iqbal, M. A., and A. Iqbal. 2015. Overviewing forage shortage for dairy animals and suitability of forage sorghum for ensiling. Global Veterinaria 14 (2):173–7. doi: 10.5829/idosi.gv.2015.14.02.92128.
  • Iqbal, M. A. 2015. Agronomic management strategies elevate forage sorghum yield: a review. Journal of Advanced Botany and Zoology 3 (2):1–6. doi: 10.15297/JABZ.V3I2.04.
  • Izzo, R., F. Navari-Izzo, and M. F. Quartacci. 1991. Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of Plant Nutrition 14(7):687–99. doi: 10.1080/01904169109364235.
  • Jackson, M. L. 1958. Soil chemical analysis. New Jersey: Prentice-Hall Inc. Englewood Cliffs.
  • James, R. A., C. Blake, C. S. Byrt, and R. Munns. 2011. Major genes for Na + exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na + accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany 62 (8):2939–47. doi: 10.1093/jxb/err003.
  • Janda, T., M. Pál, É. Darkó, and G. Szalai. 2017. Use of salicylic acid and related compounds to improve the abiotic stress tolerance of plants: practical aspects. In Salicylic acid: a multifaceted hormone, ed. by R. Nazar, N. Iqbal and N. Khan. Singapore: Springer.
  • Jayakannan, M., J. Bose, O. Babourina, Z. Rengel, and S. Shabala. 2013. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K(+) loss via a GORK channel. Journal of Experimental Botany 64 (8):2255–68. doi: 10.1093/jxb/ert085.
  • Jayakannan, M., J. Bose, O. Babourina, Z. Rengel, and S. Shabala. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation 76 (1):25–40. doi: 10.1007/s10725-015-0028-z.
  • Jini, D., and B. Joseph. 2017. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science 24 (2):97–108. doi: 10.1016/j.rsci.2016.07.007.
  • Kaydan, D., M. Yagmur, and N. Okut. 2007. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Billimleri Dergisi 13 (2):114–9.
  • Khan, N., M. Khan, D. M. Asgher, F. Mehar, A. Masood, and S. Syeed. 2014. Salinity tolerance in plants: revisiting the role of sulfur metabolites. Journal of Plant Biochemistry and Physiology 2 (1):120. doi: 10.4172/2329-9029.1000120.
  • Khan, N., S. Shabina, A. Masood, R. Nazar, and N. Iqbal. 2010. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology 1(1):1. doi: 10.4081/pb.2010.e1.
  • Khan, W., B. Prithiviraj, and D. L. Smith. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160 (5):485–92. doi: 10.1078/0176-1617-00865.
  • Knight, S. L., R. B. Rogers, M. A. L. Smith, and L. A. Sporaer. 1992. Effects of NaCl salinity on miniature dwarf tomato ‘Micro‐Tom’: I. Growth analyses and nutrient composition. Journal of Plant Nutrition 15 (11):2315–27. doi: 10.1080/01904169209364476.
  • Lacerda, C. F. D. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany 54:69–76.
  • Lacerda, C. F., De, J. Cambraia, M. A. O. Cano, and H. A. Ruiz. 2001. Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Revista Brasileira de Fisiologia Vegetal 13(3):270–84. doi: 10.1590/S0103-31312001000300003.
  • Lacerda, C. F., de, J. Cambraia, M. A. O. Cano, and H. A. Ruiz. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany 49:107–20. doi: 10.1016/S0098-8472(02)00064-3.
  • Leghari, S. J., N. Ahmed Wahocho, G. Laghari, A. Laghari, G. Mustafa Bhabhan, K. HussainTalpur, T. Ahmed Bhutto, S. Ali Wahocho, and A. Lashari. 2016. Role of nitrogen for plant growth and development: a review. Advances in Environmental Biology 10 (9):209–18.
  • Maathuis, F. J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology 12 (3):250–8. doi: 10.1016/j.pbi.2009.04.003.
  • Mahmood, T., N. Iqbal, S. Raza, M. Qasim, and M. Ashraf. 2010. Growth modulation and ion partitioning in salt stressed sorghum (Sorghum bicolor L.) by exogenous supply of salicylic acid. Pakistan Journal of Botany 42 (5):3047–54.
  • Marschner, H. 2012. Mineral nutrition of higher plants. 3rd ed. London: Academic Press.
  • Miura, K. 2013. Nitrogen and phosphorus nutrition under salinity stress. In Ecophysiology and responses of plants under salt stress, ed. by P. Ahmad, M. Azooz and M. Prasad. New York, NY: Springer.
  • Miura, K., and Y. Tada. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science 5:4. doi: 10.3389/fpls.2014.00004.
  • Mor, R. P., and H. R. Manchanda. 1992. Influence of phosphorus on the tolerance of table pea to chloride and sulfate salinity in a sandy soil. Arid Soil Research and Rehabilitation 6 (1):41–52. doi: 10.1080/15324989209381295.
  • Munns, H., and R. Greenway. 1980. Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology and Physiology 31:149–90. doi: doi: 10.1146/annurev.pp.31.060180.001053.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25 (2):239–50. doi: 10.1046/j.0016-8025.2001.00808.x.
  • Munns, R. 2005. Genes and salt tolerance: bringing them together. The New Phytologist 167 (3):645–63. doi: 10.1111/j.1469-8137.2005.01487.x.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59 (1):651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Nasr, T. A., E. M. El-Azab, and M. Y. El-Shurafa. 1977. Effect of salinity and water table on the mineral content of plum and peach. Scientia Horticulturae 7 (4):347–57. doi:https://doi.org/10.1016/0304-4238(77)90007-3.
  • Nazar, R., N. Iqbal, A. Masood, S. Syeed, and N. A. Khan. 2011. Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany 70(2-3):80–7. doi: 10.1016/j.envexpbot.2010.09.011.
  • Nazar, R., N. Iqbal, S. Syeed, and N. A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology 168 (8):807–15. doi: 10.1016/j.jplph.2010.11.001.
  • Netondo, G. W., J. C. Onyango, and E. Beck. 2004. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science 44 (3):797–805. doi: 10.2135/cropsci2004.0797.
  • Nimir, N. E. A., G. Zhou, W. Guo, B. Ma, S. Lu, and Y. Wang. 2017. Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability, and photosynthesis under salt stress of sweet sorghum [Sorghum bicolor (L.) Moench. ]." Canadian Journal of Plant Science 97 (3):525–35. https://doi.org/10.1139/cjps-2016-0110.
  • Noreen, S., H. Athar, and M. Ashraf. 2013. Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pakistan Journal of Botany 45 (6):1873–81.
  • Noreen, S., A. Siddiq, K. Hussain, S. Ahmad, and M. Hasanuzzaman. 2017. Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L.) crop. Acta Scientiarum Polonorum 16 (2):57–74.
  • Nxele, X., A. Klein, and B. K. Ndimba. 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany 108:261–6. doi: 10.1016/j.sajb.2016.11.003.
  • Oertli, J. J. 1991. Nutrient management under water and salinity stress, proceeding of the symposium on nutrient management for sustained productivity. Department of Soil Science Punjab Agricultural University India: Ludhiana
  • Omari, R. E. L., and M. Nhiri. 2015. Adaptive response to salt stress in sorghum (Sorghum bicolor.). American-Eurasian Journal of Agricultural and Environmental Sciences 15 (7):1351–60. doi: 10.5829/idosi.aejaes.2015.15.7.12683.
  • Pottosin, I., and S. Shabala. 2014. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Frontiers in Plant Science 5:154. doi: 10.3389/fpls.2014.00154.
  • Rahman, S., G. F. Vance, and L. C. Munn. 1993. Salinity induced effects on the nutrient status of soil, corn leaves and kernels. Communications in Soil Science and Plant Analysis 24 (17-18):2251–69. doi: 10.1080/00103629309368953.
  • Rahnama, A., R. A. James, K. Poustini, and R. Munns. 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology 37 (3):255–63. doi: 10.1071/FP09148.
  • Rajeshwari, V., and V. Bhuvaneshwari. 2017. Salicylic acid induced salt stress tolerance in plants. International Journal of Plant Biology & Research 5 (3):1067.
  • Rama, T., Rashad, R., and A. Hussien. 2014. A comparison study on the effect of some growth regulators on the nutrients content of maize plant under salinity conditions. Annals of Agricultural Sciences 59 (1):89–94. doi: 10.1016/j.aoas.2014.06.013.
  • Rhodes, D., and A. D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 44 (1):357–84. doi: 10.1146/annurev.pp.44.060193.002041.
  • Rogers, M. E., C. M. Grieve, and M. C. Shannon. 2003. Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant and Soil 253 (1):187–94. doi: 10.1023/A:1024543215015.
  • Rozeff, N. 1995. Sugarcane and salinity – a review paper. Sugarcane 5:8–19.
  • Sadeghi, H., and F. A. Shourijeh. 2012. Salinity induced effects on growth parameters, chemical and biochemical characteristics of two forage sorghum (Sorghum bicolor L.) cultivars. Asian Journal of Plant Sciences 11(1):19–27. doi: 10.3923/ajps.2012.19.27.
  • Sairam, R. K., and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86 (3):407–21.
  • Salwa, A., B. Orabi, B. Mekki, and F. A. Sharara. 2013. Alleviation of adverse effects of salt stress on Faba Bean (Vicia faba L.) plants by exogenous application of salicylic acid. World Applied Sciences Journal 27 (4):418–27.
  • Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology 116 (2):447–53. doi: 10.1104/pp.116.2.447.
  • Shakeri, E., and Y. Emam. 2017. Selectable traits in sorghum genotypes for tolerance to salinity stress. Journal of Agricultural Science and Technology 19 (6):1319–32.
  • Shaki, F., H. Ebrahimzadeh Maboud, and V. Niknam. 2017. Central role of salicylic acid in resistance of safflower (Carthamus tinctorius L.) against salinity. Journal of Plant Interactions 12 (1):414–20. doi: 10.1080/17429145.2017.1373870.
  • Shakirova, F. M., A. R. Sakhabutdinova, M. V. Bezrukova, R. A. Fatkhutdinova, and D. R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science 164 (3):317–22. https://doi.org/10.1016/S0168-9452(02)00415-6. doi: 10.1016/S0168-9452(02)00415-6.
  • Skerrett, M., and S. D. Tyerman. 1994. A channel that allows inwardly directed fluxes of anions in protoplasts derived from wheat roots. Planta 192:295–305.
  • Starck, Z. 2005. Gospodarka mineralna ros´lin. In Fizjologia ros´lin ed. by J. Koncewicz and S. Lewak. Warszwa: PWN.
  • Suhayda, C. G., J. L. Giannini, D. P. Briskin, and M. C. Shannon. 1990. Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiology 93(2):471–8. doi: 10.1104/pp.93.2.471.
  • Sun, Y., G. Niu, P. Osuna-Avila, L. Zhao, G. Ganjegunte, G. Peterson, J. Peralta-Videa, and J. Gardea-Torresdey. 2014. Variability in salt tolerance of Sorghum bicolor L. Agricultural Science 2 (1):9–21. doi: 10.12735/as.v2i1p9.
  • Szepesi, A., J. Csiszár, S. Bajkán, K. Gémes, F. Horváth, L. Erdei, A. K. Deér, M. L. Simon, and I. Tari. 2005. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biologica Szegediensis 49 (1-2):123–5.
  • Talke, I. N., D. Blaudez, F. J. Maathuis, and D. Sanders. 2003. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends in Plant Science 8 (6):286–93. doi: 10.1016/S1360-1385(03)00099-2.
  • Tari, I., G. Laskay, Z. Takács, and P. Poór. 2013. Response of sorghum to abiotic stresses: a review. Journal of Agronomy and Crop Science 199 (4):264–74. doi: 10.1111/jac.12017.
  • Tufail, A., M. Arfan, A. R. Gurmani, A. Khan, and A. Bano. 2013. Salicylic acid induced salinity tolerance in maize (Zea mays. )." Pakistan Journal of Botany 45:75–82.
  • Tunçtürk, M., R. Tunçtürk, B. Yıldırım, and V. Çiftçi. 2011. Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology 10:1827–32.
  • Vicente, M., Rivas-San, and J. Plasencia. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62 (10):3321–38. doi: 10.1093/jxb/err031.
  • Wall, L. L., C. W. Gehrke, and J. Suzuki. 1980. An automated turbidimetric method for total sulfur in plant tissue and sulfate sulfur in soils. Communications in Soil Science and Plant Analysis 11 (11):1087–103. doi: 10.1080/00103628009367107.
  • Waraich, E. A., R. Ahmad, and M. Y. Ashraf. 2011. Role of mineral nutrition in alleviation of drought stress in plants [online]. Australian Journal of Crop Science 5 (6):764–77.
  • White, P. J., and M. R. Broadley. 2003. Calcium in plants. Annals of Botany 92 (4):487–511. doi: 10.1093/aob/mcg164.
  • Wolf, O., R. Munns, M. L. Tonnet, and W. D. Jeschike. 1990. Concentrations and transport of solutes in xylem and phloem along the axis of NaCl-treated Hordeum vulgare. Journal of Experimental Botany 43:1133–41. doi: 10.1093/jxb/41.9.1133.
  • Yildirim, E., M. Turan, and I. Guvenc. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition 31 (3):593–612. doi: 10.1080/01904160801895118.
  • Yousif, Y. H., F. T. Bingham, and D. M. Yermanos. 1972. Growth, mineral composition, and seed oil of sesame (Sesamum indicum L.) as affected by NaCl. Soil Science Society of America Journal 36(3):450–3. (doi: 10.2136/sssaj1972.03615995003600030025x.
  • Yuncai, H., and U. Schmidhalter. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168 (4):541–9. doi: 10.1002/jpln.200420516.
  • Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167 (3):527–33. doi: 10.1016/j.plantsci.2004.04.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.