1,047
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Challenges in organic component selection and biochar as an opportunity in potting substrates: a review

ORCID Icon, , , , , , & show all
Pages 1386-1401 | Received 28 Dec 2017, Accepted 25 Oct 2018, Published online: 25 May 2019

References

  • Abbas, M., M. Aftab, M. Zafar-Ul-Hye, Q. Iqbal, M. Hussain, and M. M. Khan. 2015. Effect of organically amended growing substrates on the growth and physiological attributes of citrus plants. Communications in Soil Science and Plant Analysis 46 (15):1863–80. doi: 10.1080/00103624.2015.1059846.
  • Aendekerk, T. G. L. 1997. Decomposition of peat substrates in relation to physical properties and growth of Chamaecyparis. Acta Horticulturae 450:191–8. doi: 10.17660/ActaHortic.1997.450.22.
  • Alexander, P. D., and N. C. Bragg. 2014. Defining sustainable growing media for sustainable UK horticulture. Acta Horticulturae 1034:219–24. doi: 10.17660/ActaHortic.2014.1034.26.
  • Alexander, P. D., N. C. Bragg, R. Meade, G. Padelopoulos, and O. Watts. 2008. Peat in horticulture and conservation: The UK response to a changing world. Mires and Peat 3:1–10.
  • Alexander, P. D., R. H. Williams, and I. M. Nevison. 2013. Improving gardener’s understanding of water management in peat and peat-free multi-purpose growing media: An assessment with fuchsia. Acta Horticulturae 1013:257–63. doi: 10.17660/ActaHortic.2013.1013.30.
  • Allaire, S. E., J. Caron, I. Duchesne, L.-É. Parent, and J.-A. Rioux. 1996. Air-filled porosity, gas relative diffusivity, and tortuosity: Indices of Prunus x cistena sp. in peat substrates. Journal of the American Society for Horticultural Science 121 (2):236–42. doi: 10.21273/JASHS.121.2.236.
  • Allaire, S. E., J. Caron, and L. É. Parent. 1999. Changes in physical properties if peat substrates during plant growth. Canadian Journal of Soil Science 79:137–9. doi: 10.4141/S98-060.
  • Allaire, S. E., J. Caron, C. Menard, and M. Dorais. 2005. Potential replacements for rockwool as growing substrate for greenhouse tomato. Canadian Journal of Soil Science 85 (1):67–74. doi: 10.4141/S04-026.
  • Allaire, S. E., and S. F. Lange. 2017. Report: Horticultural substrates containing biochar: Performance and economy. CRMR-2017-SA-3. Centre de Recherchesur les Matériaux Renouvelables, Université Laval, Québec, Canada, p. 40.
  • Alsanius, B. W., and W. Wohanka. 2009. Prospects for biological characterization and evaluation of growing media. Acta Horticulturae 819:99–109. doi: 10.17660/ActaHortic.2009.819.9.
  • Altland, J. E., and J. C. Locke. 2012. Biochar affects macronutrient leaching from a soilless substrate. HortScience 47 (8):1136–40. doi: 10.21273/HORTSCI.47.8.1136.
  • Altland, J. E., and J. C. Locke. 2013. Effect of biochar type on macronutrient retention and release from soilless substrate. HortScience 48 (11):1397–402. doi: 10.21273/HORTSCI.48.11.1397.
  • Argo, W. R. 1998. Root medium physical properties. HortTechnology 8:481–485. doi: 10.21273/HORTTECH.8.4.481.
  • Atkinson, C. J., J. D. Fitzgerald, and N. A. Hipps. 2010. Potential mechanisms for achieving agriculture benefits from biochar application to temperate soils: A review. Plant and Soil 337:1–18. doi: 10.1007/s11104-010-0464-5.
  • Ball, V. 1998. Media mixes. In Ball red book, ed. V. Ball, 16th ed., 93–6. West Chicago, IL: Ball Publishing.
  • Barreto, M. S., and K. B. Jagtap. 2006. Assessment of substrates for economical production of gerbera (Gerbera jamesonii Bolus ex Hooker F.) flowers under protected cultivation. Journal of Ornamental Horticulture 9:136–8.
  • Behe, B. K., B. L. Campbell, C. R. Hall, H. Khachatryan, J. H. Dennis, and C. Yue. 2013. Consumer preferences for local and sustainable plant production characteristics. HortScience 48 (2):200–8. doi: 10.21273/HORTSCI.48.2.200.
  • Belda, R. M., A. Lidón, and F. Fornes. 2016. Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products 94:132–42. doi: 10.1016/j.indcrop.2016.08.024.
  • Beozzi, S., F. Cabral, E. Vasconcelos, and H. M. Ribeiro. 2015. Organic production of potted parsley and coriander in coconut coir amended with compost. International Symposium on Growing Media, Composting and Substrate Analysis-SusGro 2015, 1168, pp. 295–302. doi: 10.17660/ActaHortic.2017.1168.38.
  • Bilderback, T. 2009. A nursery friendly method for measuring air filled porosity of container substrates. SNA Research Conference 54:212–4.
  • Bilderback, T. E., S. L. Warren, J. S. Owen, and J. P. Albano. 2005. Healthy substrates need physicals too! HortTechnology 15:747–51. doi: 10.21273/HORTTECH.15.4.0747.
  • Bragg, N. 1991. Peat and its alternatives – Report for the horticultural development company (HDC). Petersfield, UK: HDC.
  • Bragg, N. 1998. Grower handbook 1: Growing media. Kent, UK: Nexus.
  • Bragg, N., and W. Brough. 2014. The development of responsibly sourced growing media components and mixes. Acta Horticulturae 1055:141–4. doi: 10.17660/ActaHortic.2014.1055.30.
  • Bragg, N. C., and B. J. Chambers. 1988. Interpretation and advisory applications of compost air-filled porosity (AFP) measurements. Acta Horticulturae 221:35–44. doi: 10.17660/ActaHortic.1988.221.3.
  • Bunt, A. C. 1983. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates. Acta Horticulturae 150:143–53. doi: 10.17660/ActaHortic.1984.150.15.
  • Bunt, A. C. 1988. Media mixes for container grown plants. London, UK: Unwin Hyman.
  • Carlile, B., and A. Coules. 2013. Towards sustainability of growing media. Acta Horticulturae 1013:341–9. doi: 10.17660/ActaHortic.2013.1013.42.
  • Carlile, B., and G. Schmilewski. 2010. Life in growing media – the good, the bad and the ugly. Proceedings of the International Peat Society. Peat in Horticulture – Life in growing media, pp. 7–14.
  • Carlile, W. R., and D. K. Dickinson. 2004. Dehydrogenase as an indicator of microbial activity in growing media. Acta Horticulturae 644:517–23. doi: 10.17660/ActaHortic.2004.644.69.
  • Carlile, W. R., and D. P. Wilson. 1991. Microbial activity in growing media – A brief review. Acta Horticulturae 294:197–206. doi: 10.17660/ActaHortic.1991.294.21.
  • Carlile, W. R., C. Cattivello, and P. Zaccheo. 2015. Organic growing media: Constituents and properties. Vadose Zone Journal 14 (6). In press. doi: 10.2136/vzj2014.09.0125.
  • Caron, J., J. S. Price, and L. Rochefort. 2015. Physical properties of organic soil: Adapting mineral soil concepts to horticultural growing media and histosol characterization. Vadose Zone Journal 14 (6). In press. doi: 10.2136/vzj2014.10.0146.
  • Caron, J. C., and V. K. N. Nkongolo. 1999. Aeration in growing media: Recent developments. Acta Horticulturae 481:545–51. doi: 10.17660/ActaHortic.1999.481.64.
  • Carter, S., S. Shackley, S. Sohi, T. B. Suy, and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3 (2):404–18. doi: 10.3390/agronomy3020404.
  • Cattivello, C., L. Crippa, and P. Zaccheo. 2015. Evaluation of almond shells as cover material and minor component of substrates for young plants. International Symposium on Growing Media, Composting and Substrate Analysis-SusGro, 2015, 1168, pp. 79–84. doi: 10.17660/ActaHortic.2017.1168.11.
  • Chong, C. 2005. Experiences with wastes and composts in nursery substrates. HortTechnology 15:739–47. doi: 10.21273/HORTTECH.15.4.0739.
  • Chrysargyris, A., O. Antoniou, A. Tzionis, M. Prasad, and N. Tzortzakis. 2018. Alternative soilless media using olive-mill and paper waste for growing ornamental plants. Environmental Science and Pollution Research 25:1–13.
  • Cleary, J., N. T. Roulet, and T. R. Moore. 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A life cycle analysis. Ambio 34 (6):456–61.
  • Conversa, G., A. Bonasia, C. Lazzizera, and A. Elia. 2015. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Frontiers in Plant Science 6:1–11.
  • de Boodt, M., and O. Verdonck. 1972. The physical properties of the substrates in horticulture. Acta Horticulturae 26:37–44. doi: 10.17660/ActaHortic.1972.26.5.
  • De Lojo, J., E. Gandolfo, D. Gómez, V. Feuring, S. Monti, E. Giardina, C. Boschi, and A. Di Benedetto. 2017. Root restriction effects on the bedding pot plant Impatiens walleriana. Journal of Experimental Agriculture International 15 (4):1–16. doi: 10.9734/JEAI/2017/31997.
  • Dede, O. H., and S. Ozdemir. 2018. Development of nutrient-rich growing media with hazelnut husk and municipal sewage sludge. Environmental Technology 39 (17):2223–30. doi: 10.1080/09593330.2017.1352038.
  • Dennis, J. H., R. G. Lopez, B. K. Behe, C. R. Hall, C. Yue, and B. L. Campbell. 2010. Sustainable production practices adopted by greenhouse and nursery plant growers. HortScience 45 (8):1232–7. doi: 10.21273/HORTSCI.45.8.1232.
  • Di Benedetto, A. 2011. Root restriction and post-transplant effects for bedding pot plants. In Ornamental plants: Types, cultivation and nutrition, ed. J. C. Aquino, 47–79. New York, NY: Nova Science Publishers, Inc.
  • Di Benedetto, A., and A. Pagani. 2012. Difficulties and possibilities of alternative substrates for ornamental bedding plants: An ecophysiological approach. In Peat: Formation, uses and biological effects, eds. C. Draguhn, and N. Ciarimboli, 1–34. New York, NY: Nova Science Publishers, Inc.
  • Di Benedetto, A., and A. Pagani. 2013. Changes in dry weight accumulation in the Impatiens walleriana pot plant in response to different pre-transplant plug cell volume. European Journal of Horticultural Science 78:76–85.
  • Dispenza, V., C. De Pasquale, G. Fascella, M. M. Mammano, and G. Alonzo. 2017. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants. Spanish Journal of Agricultural Research 14:1–11.
  • Dumroese, R. K., J. Heiskanen, K. Englund, and A. Tervahauta. 2011. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass & Bioenergy 35:2018–27. doi: 10.1016/j.biombioe.2011.01.053.
  • Dunn, C., and C. Freeman. 2011. Peatlands: Our greatest source of carbon credits? Carbon Manage 2 (3):289–301. doi: 10.4155/cmt.11.23.
  • Elad, Y., E. Cytryn, Y. M. Harel, B. Lew, and E. R. Graber. 2011. The biochar effect: Plant resistance to biotic stresses. Phytopathologia Mediterranea 50:335–49.
  • Fascella, G. 2015. Growing substrates alternative to peat for ornamental plants. In Soilless culture-use of substrates for the production of quality horticultural crops, 47–67. London, UK: InTech.
  • Fonteno, W. C. 1993. Problems & considerations in determining physical properties of horticultural substrates. Acta Horticulturae 342:197–204. doi: 10.17660/ActaHortic.1993.342.22.
  • Fornes, F., R. M. Belda, and A. Lidón. 2015. Analysis of two biochars and one hydrochar from different feedstock: Focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production 86:40–8. doi: 10.1016/j.jclepro.2014.08.057.
  • Frenkel, O., A. K. Jaiswal, Y. Elad, B. Lew, C. Kammann, and E. R. Graber. 2017. The effect of biochar on plant diseases: What should we learn while designing biochar substrates? Journal of Environmental Engineering and Landscape Management 25 (2):105–13. doi: 10.3846/16486897.2017.1307202.
  • Gandolfo, E., G. Hakim, J. Geraci, V. Feuring, E. Giardina, and A. Di Benedetto. 2016. Responses of pansy (Viola wittrockiana Gams.) to the quality of the growing media. American Journal of Experimental Agriculture 12 (3):1–10. doi: 10.9734/AJEA/2016/26144.
  • Grafiadellis, I., K. Mattas, E. Maloupa, I. Tzouramani, and K. Galanopoulos. 2000. An economic analysis of soilless culture in Gerbera production. HortScience 35 (2):300–3. doi: 10.21273/HORTSCI.35.2.300.
  • Greendex. 2014. Consumer choice and the environment – A worldwide tracking survey. Highlights report, September 2014. http://images.nationalgeographic.com/wpf/media-content/file/NGS_2014_Greendex_Highlights_FINALcb1411689730.pdf.
  • Gruda, N., and S. Tucher, and W. H. von Schnitzler. 2000. N-immobilization by wood fibre substrates in the production of tomato transplants (Lycopersicon lycopersicum (L.) Karst. ex Far.). Journal of Applied Botany and Food Quality 74:32–7.
  • Guster, R., K. Teicher, and P. Fischer. 1983. Nitrogen dynamics in bark compost as dependent on production methods. I. Model trials. Acta Horticulturae 150:175–84. doi: 10.17660/ActaHortic.1984.150.19.
  • Hakim, G., E. Gandolf, E. Giardina, and A. Di Benedetto. 2017. The effect of the pre-transplant pot media quality on pansy garden performance. International Journal of Plant & Soil Science 19:1–12. doi: 10.9734/IJPSS/2017/36877.
  • Handreck, K. A. 1992. Rapid assessment of the rate of nitrogen immobilization in organic components of potting media: I. Method development. Communications in Soil Science and Plant Analysis 23 (3–4):201–15. doi: 10.1080/00103629209368583.
  • Handreck, K. A. 1996. Phosphorus immobilization in wood waste-based potting media. Communications in Soil Science and Plant Analysis 27:2995–314.
  • Handreck, K. A. 2011. Container media: The Australian experience. Acta Horticulturae 891:287–95. doi: 10.17660/ActaHortic.2011.891.35.
  • Herrera, F., J. E. Castillo, A. F. Chica, and L. L. Bellido. 2008. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresource Technology 99 (2):287–96. doi: 10.1016/j.biortech.2006.12.042.
  • Hussain, R., A. Younis, A. Riaz, U. Tariq, S. Ali, A. Ali, and S. Raza. 2017. Evaluating sustainable and environment friendly substrates for quality production of potted Caladium. International Journal of Recycling of Organic Waste in Agriculture 6 (1):13–21. doi: 10.1007/s40093-016-0148-0.
  • Jackson, B. E., R. D. Wright, and J. R. Seiler. 2009. Changes in chemical and physical properties of pine tree substrate and pine bark during long-term nursery production. HortScience 44 (3):791–9. doi: 10.21273/HORTSCI.44.3.791.
  • Keijzer, R., and W. L. van Schie. 1997. Weeds in peat: A dangerous problem. In Peat in horticulture-Its use and sustainability, 24–27. Jyväskylä, Finland: International Peatland Society. Proceedings of the International Peat Conference, Amsterdam, 2–7 November 1997.
  • Kern, J., P. Tammeorg, M. Shanskiy, R. Sakrabani, H. Knicker, C. Kammann, E.-M. Tuhkanen, G. Smidt, M. Prasad, K. Tiilikkala, et al. 2017. Synergistic use of peat and charred material in growing media – An option to reduce the pressure on peatlands? Journal of Environmental Engineering and Landscape Management 25 (2):160–74. doi: 10.3846/16486897.2017.1284665.
  • Khachatryan, H., B. Campbell, C. Hall, B. Behe, C. Yue, and J. Dennis. 2014. The effects of individual environmental concerns on willingness to pay for sustainable plant attributes. HortScience 49 (1):69–75. doi: 10.21273/HORTSCI.49.1.69.
  • Kim, H. S., K. R. Kim, J. E. Yang, Y. S. Ok, W. I. Kim, A. Kunhikrishnan, and K. H. Kim. 2017. Amelioration of horticultural growing media properties through rice hull biochar incorporation. Waste and Biomass Valorization 8 (2):483–92. doi: 10.1007/s12649-016-9588-z.
  • Kraska, T., B. Kleinschmidt, J. Weinand, and R. Pude. 2018. Cascading use of Miscanthus as growing substrate in soilless cultivation of vegetables (tomatoes, cucumbers) and subsequent direct combustion. Scientia Horticulturae 235:205–13. doi: 10.1016/j.scienta.2017.11.032.
  • Lamont, J. R., and G. C. Elliott. 2016. Anaerobically digested dairy fiber in soilless potting media for poinsettias. International Journal of Recycling of Organic Waste in Agriculture 5 (2):173–7. doi: 10.1007/s40093-016-0130-x.
  • Lange, S. F., and S. E. Allaire. 2018. Substrates containing biochar for white spruce production (Picea glauca sp.) in nursery: Plant growth, economics and carbon sequestration. CRMR-2018-SA3-EN. GECA Environment, Quebec, QC, Canada, pp. 32.
  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: An introduction. In Biochar for environmental management, eds. J. Lehmann, and S. Joseph, 1–9. London, UK: Earthscan.
  • Lemaire, F. 1995. Physical, chemical and biological properties of growing medium. Acta Horticulturae 396:273–84. doi: 10.17660/ActaHortic.1995.396.33.
  • Lu, W., J. L. Sibley, C. H. Gilliam, J. S. Bannon, and Y. Zhang. 2006. Estimation of U.S. bark generation and implications for horticultural industries. Journal of Environmental Horticulture 24:29–34.
  • Lucas, R. E., and J. F. Davis. 1961. Relationship between pH values of organic soils and availability of 12 plant nutrients. Soil Science 92 (3):177–82. doi: 10.1097/00010694-196109000-00005.
  • Maher, M., M. Prasad, and M. Raviv. 2008. Organic soilless media components. In Soilless culture: Theory and practice, eds. M. Raviv, and J. H. Lieth, 459–504. San Diego, CA: Academic Press.
  • Mattei, P., R. Pastorelli, G. Rami, S. Mocali, L. Giagnoni, C. Gonnelli, and G. Renella. 2017. Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure. Journal of Hazardous Materials 333:144–53. doi: 10.1016/j.jhazmat.2017.03.026.
  • Mustafa, G., M. A. Ali, D. Smith, T. Schwinghamer, J. R. Lamont, N. Ahmed, S. Hussain, and M. Arshad. 2016. Guar, jantar, wheat straw, and rice hull composts as replacements for peat in muskmelon transplant production. International Journal of Recycling of Organic Waste in Agriculture 5 (4):323–32. doi: 10.1007/s40093-016-0142-6.
  • Nambuthiri, S., A. Fulcher, A. K. Koeser, R. Geneve, and G. Niu. 2015. Moving towards sustainability with alternative containers for greenhouse and nursery crop production: A review and research update. Horttechnology 25:8–16. doi: 10.21273/HORTTECH.25.1.8.
  • Nash, M. A., and F. A. Pokorny. 1990. Shrinkage of selected two-component container media. HortScience 25(8):930–1. doi: 10.21273/HORTSCI.25.8.930.
  • Nejad, A. R., and A. Ismaili. 2014. Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media. Journal of the Science of Food and Agriculture 94:905–10. doi: 10.1002/jsfa.6334.
  • Nemati, M. R., F. Simard, J. P. Fortin, and J. Beaudoin. 2015. Potential use of biochar in growing media. Vadose Zone Journal 14 (6). doi: 10.2136/vzj2014.06.0074.
  • Nieto, A., G. Gascó, J. Paz-Ferreiro, J. M. Fernández, C. Plaza, and A. Méndez. 2016. The effect of pruning waste and biochar addition on brown peat based growing media properties. Scientia Horticulturae 199:142–8. doi: 10.1016/j.scienta.2015.12.012.
  • Noble, R., and S. J. Roberts. 2004. Eradication of plant pathogens and nematodes during composting: A review. Plant Pathology 53(5):548–68. doi: 10.1111/j.0032-0862.2004.01059.x.
  • Olszewski, M. W., and S. W. Eisenman. 2017. Influence of biochar amendment on herb growth in a green roof substrate. Horticulture, Environment, and Biotechnology 58 (4):406–13. doi: 10.1007/s13580-017-0180-7.
  • Pagani, A., J. Molinari, R. Lavado, and A. Di Benedetto. 2015. Behavior of Impatiens wallerana Hook. F in alternative pot substrates: Mechanisms involved and research perspectives. Journal of Plant Nutrition 38 (14):2185–203. doi: 10.1080/01904167.2014.988357.
  • Papafotiou, M., G. Kargas, and I. Lytra. 2005. Olive-mill waste compost as a growth medium component for foliage potted plants. HortScience 40 (6):1746–50. doi: 10.21273/HORTSCI.40.6.1746.
  • Papafotiou, M., J. Chronopoulos, G. Kargas, M. Voreakou, N. Leodaritis, O. Lagogiani, and S. Gazi. 2001. Cotton gin trash compost and rice hulls as growing medium components for ornamentals. The Journal of Horticultural Science and Biotechnology 76 (4):431–5. doi: 10.1080/14620316.2001.11511389.
  • Papafotiou, M., M. Phsyhalou, G. Kargas, I. Chatzipavlidis, and J. Chronopoulos. 2004. Olive-mill wastes compost as growing medium component for the production of poinsettia. Scientia Horticulturae 102 (2):167–75. doi: 10.1016/j.scienta.2003.11.016.
  • Prasad, M. 1997. Physical, chemical and biological properties of coir dust. Acta Horticulturae 450:21–30. doi: 10.17660/ActaHortic.1997.450.1.
  • QUANTIS. 2012. Comparative life cycle assessment of horticultural growing media based on peat and other growing media constituents. European Peat and Growing Media Association, pp. 156.
  • Radin, R., R. A. Bakar, C. F. Ishak, S. H. Ahmad, and L. C. Tsong. 2018. Biochar-compost mixture as amendment for improvement of polybag-growing media and oil palm seedlings at main nursery stage. International Journal of Recycling of Organic Waste in Agriculture 7 (1):11–23. doi: 10.1007/s40093-017-0185-3.
  • Rainbow, A., and N. Wilson. 1998. The transformation of composted organic residues into effective growing media. Acta Horticulturae 469:79–88. doi: 10.17660/ActaHortic.1998.469.7.
  • Raviv, M. 2013. Composts in growing media: What’s new and what’s next? Acta Horticulturae 982:39–47. doi: 10.17660/ActaHortic.2013.982.3.
  • Raviv, M., and J. H. Lieth. 2008. Significance of soilless cultivation in agriculture. In Soilless culture: Theory and practice, eds. M. Raviv, and J. H. Lieth, 1–11. San Diego, CA: Academic Press.
  • Raviv, M., R. Wallach, A. Silber, and A. Bar-Tal. 2002. Substrates and their analysis. In Hydroponic production of vegetables and ornamentals, eds. D. Savvas, and H. C. Passam, 25–102. Athens, Greece: Embryo Publications.
  • Riaz, A., A. Younis, I. Ghani, U. Tariq, and M. Ahsan. 2015. Agricultural waste as growing media component for the growth and flowering of Gerbera jamesonii cv. hybrid mix. International Journal of Recycling of Organic Waste in Agriculture 4 (3):197–204. doi: 10.1007/s40093-015-0099-x.
  • Riaz, A., U. Farooq, A. Younis, A. Karim, and A. R. Taj. 2011. Growth responses of Zinnia to different organic media. International Symposium on Organic Matter Management and Compost Use in Horticulture, pp. 565–571. doi: 10.17660/ActaHortic.2014.1018.62.
  • Salah, G. M. J. A., and A. Romanova. 2017. Coconut fibre as an alternative growth compound for Living Green Walls. The Second Medway Engineering Conference on Systems Efficiency, Sustainability and Modelling, Tuesday, 6 June 2017, University of Greenwich, Chatham Maritime ME4 4TB.
  • Savvas, D. 2002. Nutrient solution recycling. In Hydroponic production of vegetables and ornamentals, eds. D. Savvas, and H. C. Passam, 299–343. Athens, Greece: Embryo Publications.
  • Savvas, D., G. Gianquinto, Y. Tuzel, and N. Gruda. 2013. Soilless culture. Good agricultural practices for greenhouse vegetable crops. Principles for Mediterranean Climate Areas, 217. FAO Plant Production and Protection, pp. 303–54.
  • Sax, M. S., and B. C. Scharenbroch. 2017. Assessing alternative organic amendments as horticultural substrates for growing trees in containers. Journal of Environmental Horticulture 35:66–78.
  • Scheiber, S. M., and R. C. Beeson Jr. 2006. Petunia growth and maintenance in the landscape as influenced by alternative irrigation strategies. HortScience 41 (1):235–8. doi: 10.21273/HORTSCI.41.1.235.
  • Schmilewski, G. 2008. The role of peat in assuring the quality of growing media. Mires and Peat 3, Article 2.
  • Schmilewski, G. 2009. Growing media constituents in the EU. Acta Horticulturae 819:33–45. doi: 10.17660/ActaHortic.2009.819.3.
  • Schmilewski, G. 2014. Producing growing media responsibly to help sustain horticulture. Acta Horticulturae 1034:299–305. doi: 10.17660/ActaHortic.2014.1034.37.
  • Schmilewski, G., and J. Günther. 1988. An international comparative study on the physical and chemical analysis of horticultural substrates. Acta Horticulturae 221:425–41. doi: 10.17660/ActaHortic.1988.221.49.
  • Silber, A., and A. Bar-Tal. 2008. Nutrition of substrate-grown plants. In Soilless culture: Theory and practice, eds. M. Raviv, and J. H. Lieth, 291–339. San Diego, CA: Academic Press.
  • Steiner, C., and T. Harttung. 2014. Biochar as a growing media additive and peat substitute. Solid Earth 5 (2):995–9. doi: 10.5194/se-5-995-2014.
  • Tariq, U., S. U. Rehman, M. A. Khan, A. Younis, M. Yaseen, and M. Ahsan. 2012. Agricultural and municipal waste as potting media components for the growth and flowering of Dahlia hortensis ‘Figaro. Turkish Journal of Botany 36:378–85.
  • Thomas, M. B., M. I. Spurway, and D. P. C. Stewart. 1998. A review of factors influencing organic matter decomposition and nitrogen immobilisation in container media. International Plant Propagators Society 48:66–71.
  • Tian, Y., X. Sun, S. Li, H. Wang, L. Wang, J. Cao, and L. Zhang. 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae 143:15–8. doi: 10.1016/j.scienta.2012.05.018.
  • Torkashvand, A. M., M. Alidoust, and A. M. Khomami. 2015. The reuse of peanut organic wastes as a growth medium for ornamental plants. International Journal of Recycling of Organic Waste in Agriculture 4:85–94. doi: 10.1007/s40093-015-0088-0.
  • Valverde, M., R. Madrid, A. L. García, F. M. D. Amor, and L. F. Rincón. 2013. Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects on fruit yield and mineral content. Spanish Journal of Agricultural Research 11 (1):164–72. doi: 10.5424/sjar/2013111-3566.
  • Van Os, E. A. 1999. Closed soilless growing systems: A sustainable solution for Dutch greenhouse horticulture. Water Science and Technology 39 (5):105–12. doi: 10.2166/wst.1999.0228.
  • Vaughn, S. F., J. A. Kenar, A. R. Thompson, and S. C. Peterson. 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products 51:437–43. doi: 10.1016/j.indcrop.2013.10.010.
  • Verdonck, O., R. Penninck, and M. de Boodt. 1983. The physical properties of different horticultural substrates. Acta Horticulturae 150:155–60. doi: 10.17660/ActaHortic.1984.150.16.
  • Verhagen, J. B. G. M. 2009. Stability of growing media from a physical, chemical and biological perspective. Acta Horticulturae 819:135–41. doi: 10.17660/ActaHortic.2009.819.12.
  • Verhagen, J. B. G. M., and H. T. M. Boon. 2008. Classification of growing media on their environmental profile. Acta Horticulturae 779:231–8. doi: 10.17660/ActaHortic.2008.779.28.
  • Wallach, R. 2008. Physical characteristics of soilless media. In Soilless culture: Theory and practice, eds. M. Raviv, and J. H. Lieth, 41–116. San Diego, CA: Academic Press.
  • Webber, C. L., P. M. White Jr., D. J. Spaunhorst, and E. C. Petrie. 2017. Impact of sugarcane bagasse ash as an amendment on the physical properties, nutrient content and seedling growth of a certified organic greenhouse growing media. Journal of Agricultural Science 9:1–11.
  • Webber, C. L., P. M. White P. M.Jr., E. C. Petrie, J. W. Shrefler, and M. J. Taylor. 2016. Sugarcane bagasse ash as a seedling growth media component. Journal of Agricultural Sciences 8:1–7.
  • Wever, G., and R. Scholman. 2011. RHP requirements for the safe use of green waste compost in professional horticulture. Acta Horticulturae 891:281–6. doi: 10.17660/ActaHortic.2011.891.34.
  • Xu, X., Y. Kan, L. Zhao, and X. Cao. 2016. Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environmental Pollution 213:533–40. doi: 10.1016/j.envpol.2016.03.013.
  • Youbin, Z., J. Huber, P. Zhang, and M. Dixon. 2009. Searching for recyclable or biodegradable growing media. Acta Horticulturae 819:435–42.
  • Younis, A., A. Riaz, F. Zulfiqar, A. Akram, N. A. Khan, U. Tariq, M. Nadeem, and M. Ahsan. 2016. Quality lady palm (Rhapis excelsa L.) production using various growing media. International Journal of Advances in Agricultural Sciences 1:1–9.
  • Younis, A., A. Riaz, M. Waseem, A. Khan, and M. Nadeem. 2010. Production of quality croton (Codiaeum variegatum) plants by using different growing media. American-Eurasian Journal of Agricultural and Environmental Science 7:232–7.
  • Zhang, L., X. Y. Sun, Y. Tian, and X. Q. Gong. 2014. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae 176:70–8. doi: 10.1016/j.scienta.2014.06.021.
  • Zoes, V., T. Paré, H. Dinel, S. Dumontet, V. Pasquale, and A. Scopa. 2011. Growth and yield of tomato cultivated on composted duck excreta enriched wood shavings and source-separated municipal solid waste. Italian Journal of Agronomy 6:6–10. doi: 10.4081/ija.2011.e2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.