283
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Grapevine selection for improving nutrient content and composition and the associated quality indices—a review

ORCID Icon & ORCID Icon
Pages 2176-2187 | Received 30 Aug 2018, Accepted 23 Jan 2019, Published online: 12 Aug 2019

References

  • Ahmadi, J., B. Abedi, M. Shoor, S. Eshghi, and R. A. Fahliani. 2017. Effect of salicylic acid and potassium sulfate on the primary bud necrosis and fruit set of the following year of Askari grapevine. EurAsian Journal of BioSciences 11 (1):16–24.
  • Amorós, J. A., S. Bravo, C. Pérez-de-los-Reyes, F. J. García-Navarro, J. A. Campos, M. Sánchez-Ormeño, R. Jiménez-Ballesta, and P. Higueras. 2018. Iron uptake in vineyard soils and relationships with other elements (Zn, Mn and Ca). The case of Castilla-La Mancha, Central Spain. Applied Geochemistry 88:17–22. doi: 10.1016/j.apgeochem.2017.02.009.
  • Askari-Khorasgani, O., and M. Pessarakli. 2019. Improving plant yield and quality under normal and stressful conditions by modifying the interactive signalling and metabolic pathways and metabolic interaction networks. In Handbook of plant and crop stress. ed. M. Pessarakli, 4th ed., Revised and Expanded (pp. 897-910). Boca Raton, Florida, USA: CRC Press, Taylor & Francis Publishing Group.
  • Bal, E., D. D. Kok, and A. L. Torcuk. 2017. Postharvest putrescine and ultrasound treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Michele Palieri. Journal of Central European Agriculture 18 (3):598–615. doi: 10.5513/JCEA01/18.3.1934.
  • Baldi, E., A. Miotto, C. A. Ceretta, M. Quartieri, G. Sorrenti, G. Brunetto, and M. Toselli. 2018. Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Scientia Horticulturae 227:102–111. doi: 10.1016/j.scienta.2017.09.010.
  • Basile, T., V. Alba, G. Gentilesco, M. Savino, and L. Tarricone. 2018. Anthocyanins pattern variation in relation to thinning and girdling in commercial Sugrathirteen® table grape. Scientia Horticulturae 227:202–206. doi: 10.1016/j.scienta.2017.09.045.
  • Bindon, K., P. Myburgh, A. Oberholster, K. Roux, and C. Du Toit. 2011. Response of grape and wine phenolic composition in Vitis vinifera L. cv. Merlot to variation in grapevine water status. South African Journal of Enology and Viticulture 32 (1):71–88. doi: 10.21548/32-1-1368.
  • Bindon, K., S. Kassara, Y. Hayasaka, A. Schulkin, and P. Smith. 2014. Properties of wine polymeric pigments formed from anthocyanin and tannins differing in size distribution and subunit composition. Journal of Agricultural and Food Chemistry 62 (47):11582–11593. doi: 10.1021/jf503922h.
  • Bontpart, T., M. Ferrero, F. Khater, T. Marlin, S. Vialet, A. Vallverdù-Queralt, L. Pinasseau, A. Ageorges, V. Cheynier, and N. Terrier. 2018. Focus on putative serine carboxypeptidase-like acyltransferases in grapevine. Plant Physiology and Biochemistry 130:356–66. doi: 10.1016/j.plaphy.2018.07.023.
  • Bouzas-Cid, Y., E. Trigo-Córdoba, I. Orriols, E. Falqué, and M. J. Mirás-Avalos. 2018. Influence of soil management on the red grapevine (Vitis vinifera L.) Mencía must amino acid composition and wine volatile and sensory profiles in a humid region. Beverages 4 (4):76. doi: 10.3390/beverages4040076.
  • Burtch, C. E., A. K. Mansfield, and D. C. Manns. 2017. Reaction kinetics of monomeric anthocyanin conversion to polymeric pigments and their significance to color in interspecific hybrid wines. Journal of Agricultural and Food Chemistry 65 (31):6379–6386. doi: 10.1021/acs.jafc.6b05331.
  • Coelho, E. M., C. V. da Silva Padilha, G. A. Miskinis, A. G. B. de Sá, G. E. Pereira, L. C. de Azevêdo, and M. dos Santos Lima. 2018. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. Journal of Food Composition and Analysis 66:160–167. doi: 10.1016/j.jfca.2017.12.017.
  • Dimitrovska, M., M. Bocevska, D. Dimitrovski, and M. Murkovic. 2011. Anthocyanin composition of Vranec, Cabernet Sauvignon, Merlot and Pinot Noir grapes as indicator of their varietal differentiation. European Food Research and Technology 232 (4):591–600. doi: 10.1007/s00217-011-1425-9.
  • El-Metwally, M. A., M. E. Tarabih, and E. E. El-Eryan. 2014. Effect of application of β-aminobutyric acid on maintaining quality of crimson seedless grape and controlling postharvest diseases under cold storage condition. Plant Pathology Journal 3 (3):139–151. doi: 10.3923/ppj.2014.139.151.
  • Erdogan, U., M. Turan, F. Ates, R. Kotan, R. Çakmakçi, Y. Erdogan, N. Kitir, and S. Tüfenkçi. 2018. Effects of root plant growth promoting rhizobacteria inoculations on the growth and nutrient content of grapevine. Communications in Soil Science and Plant Analysis 49 (14):1731–1738. doi: 10.1080/00103624.2018.1474910.
  • Eshghi, S., L. S. Karami. and M. J. 2014. Antioxidant activity, total phenolic compounds and anthocyanin contents in 35 different grapevine (Vitis vinifera L.) cultivars grown in Fars province. International Journal of Horticultural Science and Technology 1 (2):151–161. doi:10.22059/ijhst.2014.52787.
  • Eyduran, S., M. Akin, S. Ercisli, E. Eyduran, and D. Maghradze. 2015. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey. Biological Research 48 (1):2–8. doi: 10.1186/0717-6287-48-2.
  • Forsberg, E. M., T. Huan, D. Rinehart, H. P. Benton, B. Warth, B. Hilmers, and G. Siuzdak. 2018. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online. Nature Protocols 13 (4):633–651. doi: 10.1038/nprot.2017.151.
  • Fulcrand, H., M. Dueñas, E. Salas, and V. Cheynier. 2006. Phenolic reactions during winemaking and aging. American Journal of Enology and Viticulture 57 (3):289–297.
  • Gil, M., M. Esteruelas, E. González, N. Kontoudakis, J. Jiménez, F. Fort, J. M. Canals, I. Hermosín-Gutiérrez, and F. Zamora. 2013. Effect of two different treatments for reducing grape yield in Vitis vinifera cv Syrah on wine composition and quality: Berry thinning versus cluster thinning. Journal of Agricultural and Food Chemistry 61 (20):4968–4978. doi: 10.1021/jf400722z.
  • Gou, J.-Y., F. F. Felippes, C.-J. Liu, D. Weigel, and J.-W. Wang. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-Targeted SPL transcription factor. The Plant Cell 23 (4):1512–1522. doi: 10.1105/tpc.111.084525.
  • Han, F., Y. Ju, X. Ruan, X. Zhao, X. Yue, X. Zhuang, M. Qin, and Y. Fang. 2017. Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China. Food and Nutrition Research 61 (1):1339552. 1–11. doi: 10.1080/16546628.2017.1339552.
  • He, F., L. Mu, G.-L. Yan, N.-N. Liang, Q.-H. Pan, J. Wang, M. J. Reeves, and C.-Q. Duan. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15 (12).9057–9091. doi: 10.3390/molecules15129057.
  • Helwi, P., C. Thibon, A. Habran, G. Hilbert, S. Guillaumie, S. Delrot, P. Darriet, and C. van Leeuwen. 2015. Effect of vine nitrogen status, grapevine variety and rootstock on the levels of berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol. Journal International Des Sciences de la Vigne et du Vin/International Journal of Grape and Wine Science 49 (4):253–265. doi: 10.20870/oeno-one.2015.49.4.40.
  • Heras-Roger, J., O. Alonso-Alonso, A. Gallo-Montesdeoca, C. Díaz-Romero, and J. Darias-Martín. 2016. Influence of copigmentation and phenolic composition on wine color. Journal of Food Science and Technology 53 (6):2540–2547. doi: 10.1007/s13197-016-2210-3.
  • Huang, Y. F., S. Vialet, J. L. Guiraud, L. Torregrosa, Y. Bertrand, V. Cheynier, P. This, and N. Terrier. 2014. A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytologist 201 (3):795–809. doi: 10.1111/nph.12557.
  • Ivanova, V., B. Vojnoski, and M. Stefova. 2012. Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. Journal of Food Science and Technology 49 (2):161–172. doi: 10.1007/s13197-011-0279-2.
  • Janvary, L., T. Hoffmann, J. Pfeiffer, L. Hausmann, R. Topfer, T. C. Fischer, and W. Schwab. 2009. A double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L. Journal of Agricultural and Food Chemistry 57 (9):3512–3518. doi: 10.1021/jf900146a.
  • Karaagac, E., A. M. Vargas, M. T. de Andrés, I. Carreño, J. Ibáñez, J. Carreño, J. M. Martínez-Zapater, and J. A. Cabezas. 2012. Marker-assisted selection for seedlessness in table grape breeding. Tree Genetics & Genomes 8 (5):1003–1015. doi: 10.1007/s11295-012-0480-0.
  • Karaca, U., and A. Sabir. 2018. sustainable mitigation of alkaline stress in grapevine rootstocks (Vitis spp.) by plant growth-promoting rhizobacteria. Erwerbs-Obstbau 60 (3):211–220. doi: 10.1007/s10341-017-0361-7.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779, 1–21. doi: 10.1080/16546628.2017.1361779.
  • Kizildeniz, T., I. Pascual, J. J. Irigoyen, and F. Morales. 2018. Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Tempranillo. Yield and must quality in three consecutive growing seasons (2013–2015). Agricultural Water Management 202:299–310. doi: 10.1016/j.agwat.2017.12.001.
  • Knipfer, T., A. Eustis, C. Brodersen, A. M. Walker, and A. J. McElrone. 2015. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant, Cell & Environment 38 (8):1503–1513. doi: 10.1111/pce.12497.
  • Köse, C., A. Güneş, Ö. Kaya, N. Kıtır, M. Turan, and F. Şahin. 2018. Freeze injure and antioxidant enzyme activity of grapevine (Vitis Vinifera) under bio-boron fertilizer applications. Erwerbs-Obstbau 60 (Suppl 1):3–10. doi: 10.1007/s10341-018-0370-1.
  • Lang, C. P., N. Merkt, and C. Zörb. 2018. Different nitrogen (N) forms affect responses to N form and N supply of rootstocks and grafted grapevines. Plant Science 277:311–321. doi: 10.1016/j.plantsci.2018.10.004.
  • Lang, C. P., N. Merkt, C.-M. Geilfus, S. Graeff-Hönninger, J. Simon, H. Rennenberg, and C. Zörb. 2019. Interaction between grapevines and trees: Effects on water relations, nitrogen nutrition, and wine. Archives of Agronomy and Soil Science 65 (2):224–239. doi: 10.1080/03650340.2018.1493197.
  • Li, R., X. Xie, F. Ma, D. Wang, L. Wang, J. Zhang, Y. Xu, X. Wang, C. Zhang, and Y. Wang. 2017. Resveratrol accumulation and its involvement in stilbene synthetic pathway of Chinese wild grapes during berry development using quantitative proteome analysis. Scientific Reports 7 (1):9295, 1—11. doi: 10.1038/s41598-017-10171-x.
  • Marastoni, L., M. Sandri, Y. Pii, F. Valentinuzzi, G. Brunetto, S. Cesco, and T. Mimmo. 2019. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere 214:563–578. doi: 10.1016/j.chemosphere.2018.09.127.
  • Migicovsky, Z., S. Jason, K. M. Gardner, M. K. Aradhya, B. H. Prins, H. R. Schwaninger, C. D. Bustamante, E. S. Buckler, G.-Y. Zhong, P. J. Brown, and S. Myles. 2017. Patterns of genomic and phenomic diversity in wine and table grapes. Horticulture Research 4(1):17035, 1–11. doi: 10.1038/hortres.2017.35.
  • Muñoz-Robredo, P., P. Robledo, D. Manríquez, R. Molina, and B. G. Defilippi. 2011. Characterization of sugars and organic acids in commercial varieties of table grapes. Chilean Journal of Agricultural Research 71 (3):452–458. doi: 10.4067/S0718-58392011000300017.
  • Niu, S., F. Hao, H. Mo, J. Jiang, C. Liu, and H. Wang. 2017. Examination of molecular mechanism for the color mutation in Chinese wild grapevine (Vitis davidii). Acta Physiologiae Plantarum 39 (8):171, 1–13. doi: 10.1007/s11738-017-2473-y.
  • Olivares, D., C. Contreras, V. Muñoz, S. Rivera, M. González-Agüero, J. Retamales, and B. G. Defilippi. 2017. Relationship among color development, anthocyanin and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose. Plant Physiology and Biochemistry 115:286–297. doi: 10.1016/j.plaphy.2017.04.007.
  • Pastore, C., S. Zenoni, G. B. Tornielli, G. Allegro, S. Dal Santo, G. Valentini, C. Intrieri, M. Pezzotti, and I. Filippetti. 2011. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genomics 12 (1):631, 1–23. doi: 10.1186/1471-2164-12-631.
  • Pereg, L., A. Morugán-Coronado, M. McMillan, and F. García-Orenes. 2018. Restoration of nitrogen cycling community in grapevine soil by a decade of organic fertilization. Soil and Tillage Research 179:11–19. doi: 10.1016/j.still.2018.01.007.
  • Pinasseau, L., Vallverdú-Queralt, A. A. Verbaere, M. Roques, E. Meudec, L. Le Cunff, J.-P. Péros, A. Ageorges, N. Sommerer, J.-C. Boulet, N., et al. 2017. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Frontiers in Plant Science 8:1826: 1–24. doi: 10.3389/fpls.2017.01826.
  • Preiner, D., P. Tupajić, J. Karoglan Kontić, Ž. Andabaka, Z. Marković, and E. Maletić. 2013. Organic acids profiles of the most important Dalmatian native grapevine (V. vinifera L.) cultivars. Journal of Food Composition and Analysis 32 (2):162–168. doi: 10.1016/j.jfca.2013.09.005.
  • Quiroga, M. J., M. Á. Olego, M. Sanchez-Garcia, J. E. Medina, F. Visconti, J. J. R. Coque, and J. E. G. Jimeno. 2017. Effects of liming on soil properties, leaf tissue cation composition and grape yield in a moderately acid vineyard soil. Influence on must and wine quality. Journal International Des Sciences de la Vigne et du Vin/International Journal of Grape and Wine Science 51 (4):343–343. doi: 10.20870/oeno-one.2017.51.4.2039.
  • Rinaldo, A. R., E. Cavallini, Y. Jia, S. M. A. Moss, D. A. J. McDavid, L. C. Hooper, S. P. Robinson, G. B. Tornielli, S. Zenoni, C. M. Ford, P. K. Boss, and A. R. Walker. 2015. A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology 169 (3):1897–1916. doi: 10.1104/pp.15.01255.
  • Ruel, J. J., and M. A. Walker. 2006. Resistance to Pierce’s disease in Muscadinia rotundifolia and other native grape species. American Journal of Enology and Viticulture 57 (2):158–165.
  • Sabir, A., and G. Sari. 2019. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.). Scientia Horticulturae 244:61–67. doi: 10.1016/j.scienta.2018.09.035.
  • Salimi, L., M. Arshad, A. R. Rahimi, A. Rokhzadi, S. Amini, and M. Azizi. 2013. Effect of some essential oils on post-harvest quality of grapevine (Vitis vinifera cv Rasha (Siah-e-Sardasht)) during cold storage. International Journal of Biosciences (IJB) 3 (4):75–83. doi: 10.12692/ijb/3.4.75-83.
  • Schulz, E., T. Takayuki, E. Zuther, A. R. Fernie, and D. K. Hincha. 2016. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports 6(1):34027, 1–10. doi: 10.1038/srep34027.
  • Skates, E., J. Overall, K. DeZego, M. Wilson, D. Esposito, M. A. Lila, and S. Komarnytsky. 2018. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food and Chemical Toxicology 111:445–453. doi: 10.1016/j.fct.2017.11.032.
  • Soja, G., B. Wimmer, F. Rosner, F. Faber, G. Dersch, J. von Chamier, G. Pardeller, D. Ameur, K. Keiblinger, and F. Zehetner. 2018. Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Applied Geochemistry 88:40–48. doi: 10.1016/j.apgeochem.2017.06.004.
  • Sun, Q., M. J. Gates, E. H. Lavin, T. E. Acree, and G. L. Sacks. 2011. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species. Journal of Agricultural and Food Chemistry 59 (19):10657–10664. doi: 10.1021/jf2026204.
  • Sun, Y., H. Li, and J. R. Huang. 2012. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant 5(2):387–400. doi: 10.1093/mp/ssr110.
  • Tadayon, M. S., and G. Moafpourian. 2019. Effects of Exogenous epi-brassinolid, zinc and boron foliar nutrition on fruit development and ripening of grape (Vitis vinifera L. clv. ‘Khalili’). Scientia Horticulturae 244:94–101. doi: 10.1016/j.scienta.2018.09.036.
  • Torres, N., M. C. Antolín, I. Garmendia, and N. Goicoechea. 2018. Nutritional properties of Tempranillo grapevine leaves are affected by clonal diversity, mycorrhizal symbiosis and air temperature regime. Plant Physiology and Biochemistry 130:542–554. doi: 10.1016/j.plaphy.2018.08.004.
  • Williams, C. M. J., N. A. Maier, and L. Bartlett. 2005. Effect of molybdenum foliar sprays on yield, berry size, seed formation, and petiolar nutrient composition of “Merlot” grapevines. Journal of Plant Nutrition 27 (11):1891–1916. doi: 10.1081/PLN-200030023.
  • Wojdylo, A., J. Samoticha, P. Nowicka, and J. Chmielewska. 2018. Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC-PDA-ESI-MS QTof. Food Chemistry 239:94–101. doi: 10.1016/j.foodchem.2017.06.077.
  • Wurz, D. A., B. P. de Bem, R. Allebrandt, J. L. M. Filho, A. F. Brighenti, M. Outemane, L. Rufato, and A. A. Kretzschmar. 2017. Timing of leaf removal modifies chemical and phenolic composition of Sauvignon Blanc wine. BIO Web of Conferences 9:02027, 1–4. doi: 10.1051/bioconf/20170902027.
  • Xie, X., and Y. Wang. 2016. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. Planta 244 (5):1075–1094. doi: 10.1007/s00425-016-2569-4.
  • Xing, R.-R., S.-Y. Li, F. He, Z. Yang, C.-Q. Duan, Z. Li, J. Wang, and Q.-H. Pan. 2015. Mass spectrometric and enzymatic evidence confirm the existence of anthocyanidin 3,5-O-diglucosides in Cabernet Sauvignon (Vitis vinifera L.) grape berries. Journal of Agricultural and Food Chemistry 63 (12):3251–3260. doi: 10.1021/acs.jafc.5b00053.
  • Xu, C., Y. Yagiz, L. Zhao, A. Simonne, J. Lu, and M. R. Marshall. 2017. Fruit quality, nutraceutical and antimicrobial properties of 58 muscadine grape varieties (Vitis rotundifolia Michx.) grown in the United States. Food Chemistry 215:149–156. doi: 10.1016/j.foodchem.2016.07.163.
  • Yuan, F., and M. C. Qian. 2016. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Food Chemistry 192:633–641. doi: 10.1016/j.foodchem.2015.07.050.
  • Zerihun, A., L. McClymont, D. Lanyon, I. Goodwin, and M. Gibberd. 2015. Deconvoluting effects of vine and soil properties on grape berry composition. Journal of the Science of Food and Agriculture 95 (1):193–203. doi: 10.1002/jsfa.6705.
  • Zhao, Q., C.-Q. Duan, and J. Wang. 2010. anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines. International Journal of Molecular Sciences 11 (5):2212–2228. doi: 10.3390/ijms11052212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.