140
Views
2
CrossRef citations to date
0
Altmetric
Articles

Copper induced iron deficiency in wheat (Triticum aestivum L)

&
Pages 2824-2843 | Received 04 Feb 2019, Accepted 04 Jun 2019, Published online: 11 Sep 2019

References

  • Ali, F., A. Sadiq, I. Ali, M. Amin, and M. Amir. 2014. Effect of applied P on the availability of micronutrients in alkaline-calcareous soil. Journal of Environment and Earth Science 4:2224–3216.
  • Arshad, M., G. Murtaza, M. Arif Ali, M. Shafiq, C. Dumat, and N. Ahmed. 2011. Wheat growth and phytoavailability of copper and zinc as affected by soil texture in saline-sodic conditions. Pakistan Journal of Botany 43 (5):2433–9.
  • Azeez, M. O., O. O. Adesanwo, and J. A. Adepetu. 2014. Effect of copper (Cu) application on soil available nutrients and uptake. African Journal of Agricultural Research 10 (5):359–64. doi: 10.5897/AJAR2014.9010.
  • Barik, K. C., and A. S. Chandel. 2001. Effect of copper levels on growth, grain yield and copper uptake from different varieties of soybean. Indian Journal of Agricultural Sciences 71:118–20.
  • Bingham, F. T., and M. J. Garber. 1960. Solubility and availability of micronutrients in relation to P fertilization. Soil Science Society of America, Proceedings 19:74–7.
  • Brar, M. S., and G. S. Sekhon. 1978. Effect of zinc and copper application on the yield and micronutrient content of wheat (Triticum aestivum L.). Journal of Indian Society of Soil Sciences 26:84–6.
  • Brown, J. C., R. S. Holmes, R. E. Shapiro, and A. W. Specht. 1954. Effects of P and Cu salts on iron chlorosis of rice in flooded and non flooded soil and the associated enzymatic activity. Soil Science 79 (5):363–72. doi: 10.1097/00010694-195505000-00005.
  • Brown, J. C., R. S. Holmes, and A.W. Specht. 1955. Iron, the limiting element in a chlorosis: Part II. Copper-phosphorus induced chlorosis dependent upon plant species and varieties. Plant Physiology 30 (5):457–62. doi: 10.1104/pp.30.5.457.
  • Chaignon, V., D. D. Malta, and P. Hinsinger. 2002. Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytologist 154 (1):121–30. doi: 10.1046/j.1469-8137.2002.00349.x.
  • Chhibba, I. M., V. K. Nayyar, and P. N. Takkar. 1994. Upper critical level of copper in wheat (Triticum aestivum) raised on typic ustipsamment soil. Indian Journal of Agricultural Sciences 64 (5):285–9.
  • Dar, W. D. 2004. Macro benefits from micronutrients for grey to green revolution in agriculture. Proceedings of IFA International Symposium on Micronutrients, New Delhi, India.
  • Fageria, N. K. 2009. The use of nutrients in crop plants. London: CRC Press.
  • Fageria, N. K., V. C. Baligar, A. Moreira, and L. A. C. Moraes. 2013. Soil P influence on growth and nutrition of tropical legume cover crops in acidic soil. Communications in Soil Science and Plant Analysis 44 (22):3340–64. doi: 10.1080/00103624.2013.847954.
  • Fageria, N. K., and A. Moreira. 2011. The role of mineral nutrition on root growth of crop plants. Advances in Agronomy 110:251–331.
  • Goel, V., and B. S. Duhan. 2014. Ashwagandha (Withania somnifera L. Dunal) crop as affected by the application of farm yard manure (FYM) and inorganic phosphorus in typic torripsamment of Hisar. African Journal of Biotechnology 13:743–8. doi: 10.5897/AJB2013.13538.
  • Guan, T. X., H. B. He, X. D. Zhang, and Z. Bai. 2011. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere 82 (2):215–22. doi: 10.1016/j.chemosphere.2010.10.018.
  • Jackson, M. L. 1967. Soil chemical analysis prentice. New Delhi: Hall of India Pvt. Ltd.
  • Kochain, L. V. 1991. Mechanics of micronutrient uptake and translocation in plant. In: Micronutrient in Agriculture, eds. J. J. Mortvelt, F. R. Cox, L. M. Shuman and R. M. Welch, 229–85. Madison, WI: Soil Science Society of America Book Ser 5.
  • Kopittke, P. M., and N. W. Menzies. 2006. Effect of Cu toxicity on the growth of cowpea (Vigna unguiculata). Plant and Soil 279 (1–2):287–96. doi: 10.1007/s11104-005-1578-z.
  • Kumar, R., N. K. Mehrotra, B. D. Nautiyal, P. Kumar, and P. K. Singh. 2009. Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). Journal of Environmental Biology 30 (4):485–8.
  • Lindsay, W. L., and W.A. Norvell. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Mamo, T., and J. W. Parsons. 1987. Phosphorus micronutrient interactions in teff. Journal of Tropical Agriculture 64:3009–12.
  • Manchanda, J. S., S. S. Dhaliwal, and P. P. S. Pannu. 2008. Yield and incidence of brown leaf spot of paddy as influenced by copper fertilization in a Typic Ustipsamment. Paper presented at Annual convention of Indian Society of Soil science held at UAS, Bangalore from Nov. 27–30, 2008.
  • Michaud, A. M., M. N. Bravin, M. Galleguillos, and P. Hinsinger. 2007. Cu uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant and Soil 298 (1–2):99–111. doi: 10.1007/s11104-007-9343-0.
  • Morteza, J., E. Beuerlein James, and G. Arscott Trevor. 1991. Effects of phosphorus and cope on factors influencing nutrient uptake, photosynthesis and grain yield of wheat. Ohio Journal of Science 91 (5):191–4.
  • Motalebifard, R., N. Najafi, and S. Oustan. 2013. Effect of zinc sulphate and monocalcium phosphate fertilizers on extractable Zn and Fe under different soil moisture conditions. Iran Agricultural Research 32:71–87.
  • Northfield, T. R., A. R. Sheldon, P. M. Kopittke, and N. W. Menzies. 2011. Interaction between Cu toxicity and P deficiency in soil-grown cowpea (Vigna unguiculata L. Walp.). Plant and Soil 342 (1–2):359–67. doi: 10.1007/s11104-010-0700-z.
  • Ohki, K. 1984. Manganese deficiency and toxicity effects on growth, development and nutrient composition in wheat. Agronomy Journal 76 (2):213–8. doi: 10.2134/agronj1984.00021962007600020011x.
  • Olsen, S. R. 1972. Micronutrient interactions. In Micronutrients in agriculture, eds. J. J. Mortvedt, P. M. Giordano and W. L. Lindsay, 243–64. Madison, WI: Soil Science Society of America.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus by extracting with sodium bicarbonate. USDA Circular 939, US Govt. Printing Office, Washington D C.
  • Piening, L. J., D. J. Macpherson, and S. S. Malhi. 1989. Stem melanosis of some wheat, barley and oat cultivars on a copper deficient soil. Canadian Journal of Plant Pathology 11 (1):65–7. doi: 10.1080/07060668909501149.
  • Prasad, K., R. B. Sinha, and B. P. Singh. 1983. Nutritional balance of P, Zn and Fe in wheat. Madras Agricultural Journal 70 (8):519–22.
  • Rattan, R. K., and N. N. Goswami. 2002. Essential nutrients and their uptake by plants. In: Fundamentals of soil science, eds. G. S. Sekhon, P. K. Chhonkar, D. K. Das, N. N. Goswami, G. Narayanaswamy, S. R. Poonia, R. K. Rattan and J. Sehgal, 317. New Delhi: Indian Society of Soil Science, IARI.
  • Rattan, R. K., and D. L. Deb. 1981. Self diffusion of zinc and iron in soils as affected by pH, CaCO3, moisture, carrier and phosphorus levels. Plant and Soil 63 (3):226–377. doi: 10.1007/BF02370038.
  • Reuter, D. J., and J. B. Robinson. 1997. Plant analysis: An interpretation manual. Collingwood: CSIRO.
  • Rogerio, H. B., A. T. Luciane, R. M. Fabio, P. Marcio, O. K. Samir, and B. Daisa. 2013. Foliar copper uptake by maize plants: Effects on growth and yield. Ciencia Rural 43 (9):8–1561. Santa Maria. http://dx.doi.org/10.1590/S0103-84782013000900005.
  • Sahu, M. P., D. D. Sharma, and G. L. Jain. 1988. Phosphorus-copper interactions in the incidence of chlorosis in garden peas (Pisum sativum L.) on calcareous soil. Plant and Soil 108 (2):291–3. doi: 10.1007/BF02375662.
  • Scheiber, I. D., M. Ralf, and F. B. Julian. 2013. Chapter 11. Copper: Effects of deficiency and overload. In Interrelations between essential metal ions and human diseases. Metal ions in life sciences, eds. A. Sigel, H. Sigel, and R. K. O. Sigel, Vol. 13, 359–87. New York: Springer. doi: 10.1007/978-94-007-7500-8_11.
  • Sharma, Y. K., and H. Singh. 2012. Response of wheat cultivars to copper application in relation to yield and nutrients uptake. Annals of Plant and Soil Research 14:147–9.
  • Sheldon, A. R., and N. W. Menzies. 2005. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth) in resin buffered solution culture. Plant and Soil 278 (1–2):341–9. doi: 10.1007/s11104-005-8815-3.
  • Shukla, U. C., and N. Singh. 1979. Phosphorus–copper relationship in wheat. Plant and Soil 53 (3):399–402. doi: 10.1007/BF02277874.
  • Shuman, L. M. 1988a. Effect of organic matter on the distribution of manganese, copper, iron and zinc in soil fractions. Soil Science 146 (3):192–8.
  • Shuman, L. M. 1988b. Effect of phosphorus level on extractable micronutrients and their distribution among soil fractions. Soil Science Society of America Journal 52 (1):136–41. doi: 10.2136/sssaj1988.03615995005200010024x.
  • Silviya, R. A., and P. Stalin. 2017. Rice crop response to applied copper under varying soil available copper status at Tamilnadu, India. International Journal of Current Microbiology and Applied Sciences 6 (8):1400–8. doi: 10.20546/ijcmas.2017.608.170.
  • Singh, M., and S. S. Dahiya. 1976. Effect of calcium carbonate and iron on the availability and uptake of iron, manganese, phosphorus and calcium in pea (Pisium sativum L.). Plant and Soil 44 (3):511–20. doi: 10.1007/BF00011371.
  • Singh, A., J. S. Manchanda, H. S. Hundal, and D. S. Bhatti. 2005. Transformation and availability o0f manganese to wheat in a typic haplustept as influenced by phosphorus and manganese fertilization. Indian Journal of Ecology 32:226–34.
  • Waters, B. M., and L. C. Armbrust. 2013. Optimal copper supply is required for normal plant iron deficiency responses. Plant Signaling and Behavior 8 (12):e26611.
  • Zhang, Y. Q., Y. Deng, R. Y. Chen, Z. L. Cui, X. P. Chen, R. Yost, F. S. Zhang, and C. Q. Zou. 2012. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil 361 (1–2):143–52. doi: 10.1007/s11104-012-1238-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.