272
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Under filed conditions, mycorrhizal inoculum effectiveness depends on plant species and phosphorus nutrition

Pages 2349-2362 | Received 17 Mar 2019, Accepted 27 May 2019, Published online: 03 Sep 2019

References

  • Carballar-Hernandez, S., L. V. Hernandez-Cuevas, N. M. Montano, R. Ferrera-Cerrato, and A. Alarcon. 2018. Species composition of native arbuscular mycorrhizal fungal consortia influences growth and nutrition of poblano pepper plants (Capsicum annuum L.). Applied Soil Ecology 130:50–8. doi: 10.1016/j.apsoil.2018.05.022.
  • Ceballos, I., M. Ruiz, C. Fernández, R. Peña, A. Rodríguez, and I. R. Sanders. 2013. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. Plos One 8(8):e70633. doi: 10.1371/journal.pone.0070633.
  • Colla, G., Y. Rouphael, E. Di Mattia, C. El-Nakhel, and M. Cardarelli. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture 95(8):1706–1715. doi: 10.1002/jsfa.6875.
  • Conversa, G., C. Lazzizera, A. Bonasia, and A. Elia. 2013. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biology and Fertility of Soils 49(6):691–703. doi: 10.1007/s00374-012-0757-3.
  • Douds, D. D., and C. Reider Jr. 2003. Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biological Agriculture & Horticulture 21(1):91–102. doi: 10.1080/01448765.2003.9755251.
  • Elbon, A., and J. K. Whalen. 2015. Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: A review. Biological Agriculture & Horticulture 31(2):73–90. doi: 10.1080/01448765.2014.966147.
  • Elia, A., and G. Conversa. 2012. Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy 40:64–74. doi: 10.1016/j.eja.2012.02.001.
  • Gemma, J. N., R. E. Koske, and M. Habte. 2002. Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. American Journal of Botany 89(2):337–45. doi: 10.3732/ajb.89.2.337.
  • Giovannetti, M., and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84(3):489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x.
  • Grant, C., S. Bittman, M. Montreal, C. Plenchette, and C. Morel. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science 85(1):3–14. doi: 10.4141/P03-182.
  • Ho, L. C., P. Adams, X. Z. Li, H. Shen, J. Andrews, and Z. H. Xu. 1995. Responses of Ca-efficient and Ca-inefficient tomato cultivars to salinity in plant growth, calcium accumulation and blossom-end rot. Journal of Horticultural Science 70(6):909–918. doi: 10.1080/14620316.1995.11515366.
  • Jones, J. B. 1998. Plant Nutrition Manual. New York: CRC Publisher.
  • Karagiannidis, N., F. Bletsos, and N. Stavropoulos. 2002. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae 94(1-2):145–156. doi: 10.1016/S0304-4238(01)00336-3.
  • Koske, R. E., and J. N. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92(4):486–488. doi: 10.1016/S0953-7562(89)80195-9.
  • Latef, A., and C. X. He. 2014. Does Inoculation with Glomus mosseae Improve Salt Tolerance in Pepper Plants? Journal of Plant Growth Regulation 33(3):644–653.
  • Leonardi, C., and F. Giuffrida. 2006. Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. European Journal of Horticultural Science 97–101.
  • Matsubara, Y., H. Tamura, and T. Harada. 1995. Growth enhancement and verticillium wilt control by vesicular-arbuscular mycorrhizal fungus inoculation in eggplant. Engei Gakkai Zasshi 64(3):555–561. doi: 10.2503/jjshs.64.555.
  • Moreno, D. A., J. M. Ruiz, G. Villora, J. L. Valenzuela, and L. Romero. 1999. Optimum range of twelve tomato cultivars: I. macronutrients. Phyton-International Journal of Experimental Botany 64(1-2):45–50.
  • Nedorost, L., J. Vojtiskova, and R. Pokluda. 2014. Influence of watering regime and mycorrhizal inoculation on growth and nutrient uptake of pepper (Capsicum annuum L.). Acta Horticulturae 559–564. doi: 10.17660/ActaHortic.2014.1038.70.
  • Ortas, I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125:35–48. doi: 10.1016/j.fcr.2011.08.005.
  • Ortas, I., T. Iqbal, and Y. C. Yücel. 2019. Mycorrhizae enhances horticultural plant yield and nutrient uptake under phosphorus deficient field soil condition. Journal of Plant Nutrition 1–13. doi: 10.1080/01904167.2019.1609500.
  • Ortas, I., N. Sari, C. Akpinar, and H. Yetisir. 2011a. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae 128(2):92–98. doi: 10.1016/j.scienta.2010.12.014.
  • Ortas, I., N. Sari, C. Akpinar, and H. Yetisir. 2011b. Screening Mycorrhizae Species for Increased Growth and P and Zn Uptake in Eggplant (Solanum melongena L.) Grown under Greenhouse Conditions. European Journal of Horticultural Science 76(3):116–123.
  • Ortas, I., N. Sari, C. Akpinar, and H. Yetisir. 2013. Selection of Arbuscular Mycorrhizal Fungi Species for Tomato Seedling Growth, Mycorrhizal Dependency and Nutrient Uptake. European Journal of Horticultural Science 78(5):209–218.
  • Pellegrino, E., S. Bedini, L. Avio, E. Bonari, and M. Giovannetti. 2011. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology and Biochemistry 43(2):367–376. doi: 10.1016/j.soilbio.2010.11.002.
  • Plenchette, C., C. Clermont-Dauphin, J. M. Meynard, and J. A. Fortin. 2005. Managing arbuscular mycorrhizal fungi in cropping systems. Canadian Journal of Plant Science 85(1):31–40. doi: 10.4141/P03-159.
  • Pringle, A., and J. D. Bever. 2002. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. American Journal of Botany 89(9):1439–1446. doi: 10.3732/ajb.89.9.1439.
  • Rafique, M., and I. Ortas. 2018. Nutrient uptake-modification of different plant species in Mediterranean climate by arbuscular mycorrhizal fungi. European Journal of Horticultural Science 83(2):65–71. doi: 10.17660/eJHS.2018/83.2.1.
  • Salvioli, A., I. Zouari, M. Chalot, and P. Bonfante. 2012. The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biology 12(1):44. doi: 10.1186/1471-2229-12-44.
  • Schüßler, A., and C. Walker. 2010. The Glomeromycota: A species list with new families and new genera. The Royal Botanic Garden Kew.
  • Silva, E., Pinheiro da, V. F. F. Gomes, P. F. M. Filho, J. M. T. da Silva Júnior, and R. L. L. Ness. 2016. Development and mycorrhizal colonisation in embauba seedlings fertilised with natural phosphates and organic material. Revista Ciencia Agronomica 47(2):256–263.
  • Thakur, S. S., R. K. Bhardwaj, and U. K. Kohli. 2000. Nutrient removal from the soil by different tomato hybrids in mid-hills of Himachal Pradesh. Applied Biological Research 2(1/2):165–167.
  • Thompson, J. P., T. G. Clewett, and M. L. Fiske. 2013. Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder. Plant and Soil 371(1/2):117–137. doi: 10.1007/s11104-013-1679-z.
  • Walder, F., D. Brule, S. Koegel, A. Wiemken, T. Boller, and P. E. Courty. 2015. Plant phosphorus acquisition in a common mycorrhizal network: Regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist 205(4):1632–1645. doi: 10.1111/nph.13292.
  • Walder, F., and M. G. A. van der Heijden. 2015. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants 1(11):1–7. doi: 10.1038/nplants.2015.159.
  • Watts-Williams, S. J., F. A. Smith, M. J. McLaughlin, A. F. Patti, and T. R. Cavagnaro. 2015. How important is the mycorrhizal pathway for plant Zn uptake? Plant and Soil 390(1-2):157–166. doi: 10.1007/s11104-014-2374-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.