369
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Tomato (Solanum lycopersicum) culture in vermi-aquaponic systems: II. Strategies for sustainable and economic development: Fertilization practices in vermi-ponic unit

ORCID Icon & ORCID Icon
Pages 1726-1739 | Received 01 Feb 2020, Accepted 16 Feb 2020, Published online: 16 Mar 2020

References

  • Al Dhanhani, M. A. 2018. Determination of the ideal plant density of tomato Solanum lycopersicum under an aquaponic production system with Tilapia Oreochromis aureus under UAE conditions. Aridland Agriculture (MSc Thesis 733). Department of Aridland Agriculture, United Arab Emirates University, Al Ain, UAE, 84 p.
  • Albano, J. P., and W. B. Miller. 2001. Photodegradation of FeDTPA in nutrient solutions. I. Effects of irradiance, wavelength, and temperature. HortScience 36 (2):313–6. doi: 10.21273/HORTSCI.36.2.313.
  • Andrejiová, A.,. A. Hegedűsová, S. Adamec, O. Hegedűs, and I. Mezeyová. 2019. Increasing of selenium content and qualitative parameters in tomato (Lycopersicum esculentum Mill.) after its foliar application. Potravinarstvo Slovak Journal of Food Sciences 13 (1):351–8. doi: 10.5219/1097.
  • Arancon, N., J. V. Cleave, R. Hamasaki, K. Nagata, and J. Felts. 2020. The influence of vermicompost water extracts on the growth of plants propagated by cuttings. Journal of Plant Nutrition 43 (2):176–85. doi: 10.1080/01904167.2019.1659355.
  • Askari-Khorasgani, O., and M. Pessarakli. 2019a. Shifting saffron (Crocus sativus L.) culture from traditional farmland to controlled environment (greenhouse) condition to avoid the negative impact of climate changes and increase its productivity. Journal of Plant Nutrition 42 (19):2642–65. doi: 10.1080/01904167.2019.1659348.
  • Askari-Khorasgani, O., and M. Pessarakli. 2019b. Phytohormone homeostasis and crosstalk effects in response to osmotic stress. In Handbook of plant and crop stress, ed Pessarakli, M.,4th ed., 361–84. Boca Raton, Florida, USA: CRC Press, Taylor & Francis Publishing Group. doi: 10.1201/9781351104609-19.
  • Askari-Khorasgani, O., and M. Pessarakli. 2019c. Improving plant yield and quality under normal and stressful conditions by modifying the interactive signaling and metabolic pathways and metabolic interaction networks. In Handbook of plant and crop stress, ed Pessarakli, M. 4th ed, 893–906. Boca Raton, Florida, USA: CRC Press, Taylor & Francis Publishing Group. doi: 10.1201/9781351104609-49.
  • Askari-Khorasgani, O., F. Mortazaeinezhad, A. Golparvar, and A. Soleymani. 2014. In vitro bacterial decontamination of Kelussia odoratissima seed during dormancy breaking. Research on Crops 15 (1):237–47. doi: 10.5958/j.2348-7542.15.1.034.
  • Bahramisharif, A., and L. E. Rose. 2019. Efficacy of biological agents and compost on growth and resistance of tomatoes to late blight. Planta 249 (3):799–813. doi: 10.1007/s00425-018-3035-2.
  • Bannihatti, R., A. Suryawanshi, K. Sayyed, and V. Bhujabal. 2019. Evaluation of different soil amendments and germplasm/varieties against tomato bacterial wilt caused by Ralstonia solanacearum. International Journal of Current Microbiology and Applied Sciences 8 (02):1331–9. doi: 10.20546/ijcmas.2019.802.155.
  • Bisen, K., and H. Singh. 2019. Enhancement of antioxidants and nutritional quality of tomato inoculated with agriculturally important microorganisms (AIMs) fortified vermicompost. International Journal of Agriculture, Environment and Biotechnology 12 (1):17–22. doi: 10.30954/0974-1712.03.2019.4.
  • Buchman, J. T., W. H. Elmer, C. Ma, K. M. Landy, J. C. White, and C. L. Haynes. 2019. Chitosan-Coated mesoporous silica nanoparticle treatment of Citrullus lanatus (watermelon): Enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustainable Chemistry & Engineering 7 (24):19649–59. doi: 10.1021/acssuschemeng.9b04800.
  • Choudhary, R. C., R. V. Kumaraswamy, S. Kumari, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2019. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules 127:126–35. doi: 10.1016/j.ijbiomac.2018.12.274.
  • Chun, S.-C., and M. Chandrasekaran. 2019. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhance biotic stress tolerance in tomato. International Journal of Biological Macromolecules 125:948–54. doi: 10.1016/j.ijbiomac.2018.12.167.
  • Colman, S. L., M. F. Salcedo, A. Y. Mansilla, M. J. Iglesias, D. F. Fiol, S. Martín-Saldaña, V. A. Alvarez, A. A. Chevalier, and C. A. Casalongué. 2019. Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Plant Physiology and Biochemistry 143:203–11. doi: 10.1016/j.plaphy.2019.09.002.
  • da Silva Cerozi, B., and K. Fitzsimmons. 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology 219:778–81. doi: 10.1016/j.biortech.2016.08.079.
  • Danaher, J. J., J. M. Pickens, J. L. Sibley, J. A. Chappell, T. R. Hanson, and C. E. Boyd. 2016. Tomato seedling growth response to different water sources and a substrate partially replaced with dewatered aquaculture effluent. International Journal of Recycling of Organic Waste in Agriculture 5 (1):25–32. doi: 10.1007/s40093-016-0114-x.
  • Elmer, W. H., and J. C. White. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease-infested soil or soilless medium. Environmental Science: Nano 3 (5):1072–9. doi: 10.1039/C6EN00146G.
  • Fang, Y., X. Chen, Z. Hu, D. Liu, H. Gao, and L. Nie. 2018. Effects of hydraulic retention time on the performance of algal-bacterial-based aquaponics (AA): focusing on nitrogen and oxygen distribution. Applied Microbiology and Biotechnology 102 (22):9843–55. doi: 10.1007/s00253-018-9338-1.
  • FAOSTAT. 2017. FAOSTAT. Accessed Jan 13, 2020. http://www.fao.org/faostat/en/#data.
  • Gullian Klanian, M., M. Delgadillo Diaz, J. Aranda, and C. Rosales Juárez. 2018. Integrated effect of nutrients from a recirculation aquaponic system and foliar nutrition on the yield of tomatoes Solanum lycopersicum L. and Solanum pimpinellifolium. Environmental Science and Pollution Research 25 (18):17807–19. doi: 10.1007/s11356-018-1817-5.
  • Hajiahmadi, Z., R. Shirzadian-Khorramabad, M. Kazemzad, and M. M. Sohani. 2019. Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach. Scientia Horticulturae 243:367–75. doi: 10.1016/j.scienta.2018.08.040.
  • Hernández-Hernández, H., T. Quiterio-Gutiérrez, G. Cadenas-Pliego, H. Ortega-Ortiz, D. A. Hernández-Fuentes, M. Cabrera de la Fuente, J. Valdés-Reyna, and A. Juárez-Maldonado. 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8 (10):355. 1-17. doi: 10.3390/plants8100355.
  • Hosseinzadeh, S., G. Bonarrigo, Y. Verheust, P. Roccaro, and S. Van Hulle. 2017a. Water reuse in closed hydroponic systems: Comparison of GAC adsorption, ion exchange and ozonation processes to treat recycled nutrient solution. Aquacultural Engineering 78:190–5. doi: 10.1016/j.aquaeng.2017.07.007.
  • Hosseinzadeh, S., Y. Verheust, G. Bonarrigo, and S. Van Hulle. 2017b. Closed hydroponic systems: Operational parameters, root exudates occurrence and related water treatment. Reviews in Environmental Science and Bio/Technology 16 (1):59–79. doi: 10.1007/s11157-016-9418-6.
  • Jia, H., and Q. Yuan. 2016. Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science 2 (1):1275089. 1-15. doi: 10.1080/23311843.2016.1275089.
  • Jia, W., C. Hu, J. Xu, J. Ming, Y. Zhao, M. Cai, X. Sun, X. Liu, and X. Zhao. 2019. Dissolved organic matter derived from rape straw pretreated with selenium in soil improves the inhibition of Sclerotinia sclerotiorum growth. Journal of Hazardous Materials 369:601–10. doi: 10.1016/j.jhazmat.2019.02.055.
  • Jin, J.,. M. Wang, W. Lu, L. Zhang, Q. Jiang, Y. Jin, K. Lu, S. Sun, Q. Cao, Y. Wang, et al. 2019. Effect of plants and their root exudate on bacterial activities during rhizobacterium–plant remediation of phenol from water. Environment International 127:114–24. doi: 10.1016/j.envint.2019.03.015.
  • Jordan, R. A., L. O. Geisenhoff, F. C. d Oliveira, R. C. Santos, and E. A. S. Martins. 2018. Yield of lettuce grown in aquaponic system using different substrates. Revista Brasileira de Engenharia Agrícola e Ambiental 22 (1):27–31. doi: 10.1590/1807-1929/agriambi.v22n1p27-31.
  • Kabdwal, B. C., R. Sharma, R. Tewari, A. K. Tewari, R. P. Singh, and J. K. Dandona. 2019. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egyptian Journal of Biological Pest Control 29 (1):1–10. doi: 10.1186/s41938-018-0103-7.
  • Kaur, H., S. Bedi, V. P. Sethi, and A. S. Dhatt. 2018. Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. Journal of Plant Nutrition 41 (12):1547–54. doi: 10.1080/01904167.2018.1459689.
  • Khoshmanzar, E., N. Aliasgharzad, M. R. Neyshabouri, B. Khoshru, M. Arzanlou, and B. Asgari Lajayer. 2020. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology 17 (2):869–78. doi: 10.1007/s13762-019-02405-4.
  • Kumaraswamy, R. V., S. Kumari, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2019. Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. International Journal of Biological Macromolecules 123:59–69. doi: 10.1016/j.ijbiomac.2018.10.202.
  • Lee, S. A., I. Lupatsch, G. A. Gomes, and M. R. Bedford. 2020. An advanced Escherichia coli phytase improves performance and retention of phosphorus and nitrogen in rainbow trout (Oncorhynchus mykiss) fed low phosphorus plant-based diets, at 11 °C and 15 °C. Aquaculture 516:734549. doi: 10.1016/j.aquaculture.2019.734549.
  • Lima, L. W., M. V. Checchio, A. R. dos Reis, R. de Cássia Alves, T. Tezzoto, and P. L. Gratão. 2019. Selenium restricts cadmium uptake and improves micronutrients and proline concentration in tomato fruits. Biocatalysis and Agricultural Biotechnology 18:101057. 1-5. doi: 10.1016/j.bcab.2019.101057.
  • Liu, D., W. Han, Y. Zhang, and Y. Jiang. 2019. Evaluation of vermicompost and extracts on tomato root-knot nematode. Bangladesh Journal of Botany 48 (3):845–51.
  • Marchiol, L., A. Filippi, A. Adamiano, L. Degli Esposti, M. Iafisco, A. Mattiello, E. Petrussa, and E. Braidot. 2019. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy 9 (4):161, 1–17. doi: 10.3390/agronomy9040161.
  • Medina, E., N. Caro, L. Abugoch, A. Gamboa, M. Díaz-Dosque, and C. Tapia. 2019. Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. Journal of Food Engineering 240:191–8. doi: 10.1016/j.jfoodeng.2018.07.023.
  • Mohanty, B., A. Mahanty, S. Ganguly, T. V. Sankar, K. Chakraborty, A. Rangasamy, B. Paul, D. Sarma, S. Mathew, K. K. Asha, et al. 2014. Amino acid compositions of 27 food fishes and their importance in clinical nutrition. Journal of Amino Acids 2014:1–7. doi: 10.1155/2014/269797.
  • Mukhtar, T. 2018. Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pakistan Journal of Zoology 50 (4):1589–92. doi: 10.17582/journal.pjz/2018.50.4.sc15.
  • Muthukrishnan, S., I. Murugan, and M. Selvaraj. 2019. Chitosan nanoparticles loaded with thiamine stimulate growth and enhance protection against wilt disease in Chickpea. Carbohydrate Polymers 212:169–77. doi: 10.1016/j.carbpol.2019.02.037.
  • Nie, S., S. Huang, S. Wang, D. Cheng, J. Liu, S. Lv, Q. Li, and X. Wang. 2017. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Frontiers in Plant Science 8 (1386):1–12. doi: 10.3389/fpls.2017.01386.
  • Nuwansi, K. K. T., A. K. Verma, G. Rathore, C. Prakash, M. H. Chandrakant, and G. P. W. A. Prabhath. 2019. Utilization of phytoremediated aquaculture wastewater for production of koi carp (Cyprinus carpio var. koi) and gotukola (Centella asiatica) in an aquaponics. Aquaculture 507:361–9. doi: 10.1016/j.aquaculture.2019.04.053.
  • Oh, J.-W., C. S. Chun, and M. Chandrasekaran. 2019. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9 (1):21. 1-12. doi: 10.3390/agronomy9010021.
  • Puccinelli, M., F. Malorgio, L. A. Terry, R. Tosetti, I. Rosellini, and B. Pezzarossa. 2019. Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during postharvest ripening. Journal of the Science of Food and Agriculture 99 (5):2463–72. doi: 10.1002/jsfa.9455.
  • Rakocy, J., R. C. Shultz, D. S. Bailey, and E. S. Thoman. 2004. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. ISHS Acta Horticulturae 648: South Pacific Soilless Culture Conference - SPSCC, 648 ed. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp. 63–69. doi: 10.17660/ActaHortic.2004.648.8.
  • Reyes Lastiri, D., C. Geelen, H. J. Cappon, H. H. M. Rijnaarts, D. Baganz, W. Kloas, D. Karimanzira, and K. J. Keesman. 2018. Model-based management strategy for resource-efficient design and operation of an aquaponic system. Aquacultural Engineering 83:27–39. doi: 10.1016/j.aquaeng.2018.07.001.
  • Rodriguez, M. H., M. Bandte, T. Gaskin, G. Fischer, and C. Büttner. 2018. Efficacy of electrolytically-derived disinfectant against dispersal of Fusarium oxysporum and Rhizoctonia solani in hydroponic tomatoes. Scientia Horticulturae 234:116–25. doi: 10.1016/j.scienta.2018.02.027.
  • Roosta, H. R. 2011. Interaction between water alkalinity and nutrient solution pH on the vegetative growth, chlorophyll fluorescence and leaf magnesium, iron, manganese, and zinc concentrations in lettuce. Journal of Plant Nutrition 34 (5):717–31. doi: 10.1080/01904167.2011.540687.
  • Roosta, H. R. 2014. Comparison of the vegetative growth, eco-physiological characteristics and mineral nutrient content of basil plants in different irrigation ratios of hydroponic: Aquaponic solutions. Journal of Plant Nutrition 37 (11):1782–803. doi: 10.1080/01904167.2014.890220.
  • Roosta, H. R., and M. Hamidpour. 2011. Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Scientia Horticulturae 129 (3):396–402. doi: 10.1016/j.scienta.2011.04.006.
  • Roosta, H. R., and M. Hamidpour. 2013. Mineral nutrient content of tomato plants in aquaponic and hydroponic systems: Effect of foliar application of some macro- and micro-nutrients. Journal of Plant Nutrition 36 (13):2070–83. doi: 10.1080/01904167.2013.821707.
  • Sadana, D., and N. Didwania. 2019. Integrated disease management of bull’s eye pathogen infecting Lycopersicum esculentum (tomato). Journal of Microbiology, Biotechnology and Food Sciences 9 (1):53–7. doi: 10.15414/jmbfs.2019.9.1.53-57.
  • Saldaña-Sánchez, W. D., J. M. León-Morales, Y. López-Bibiano, M. Hernández-Hernández, E. C. Langarica-Velázquez, and S. García-Morales. 2019. Effect of V, Se, and Ce on growth, photosynthetic pigments, and total phenol content of tomato and pepper seedlings. Journal of Soil Science and Plant Nutrition 19 (3):678–88. doi: 10.1007/s42729-019-00068-1.
  • Seawright, D. E., R. R. Stickney, and R. B. Walker. 1998. Nutrient dynamics in integrated aquaculture–hydroponics systems. Aquaculture 160 (3-4):215–37. doi:. (97)00168-3 doi: 10.1016/S0044-8486(97)00168-3.
  • Siddiqui, M. H., and M. H. Al-Whaibi. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences 21 (1):13–7. doi: 10.1016/j.sjbs.2013.04.005.
  • Song, X., M. Liu, D. Wu, B. S. Griffiths, J. Jiao, H. Li, and F. Hu. 2015. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology 89:25–34. doi: 10.1016/j.apsoil.2015.01.005.
  • Stratful, I., M. D. Scrimshaw, and J. N. Lester. 2001. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research 35 (17):4191–9. doi: (01)00143-9 doi: 10.1016/S0043-1354(01)00143-9.
  • Vanti, G. L., S. Masaphy, M. Kurjogi, S. Chakrasali, and V. B. Nargund. 2019. Synthesis and application of chitosan-copper nanoparticles on damping-off causing plant pathogenic fungi. International Journal of Biological Macromolecules. In press. doi: 10.1016/j.ijbiomac.2019.11.179.
  • Villarroel, M., J. M. R. Alvariño, and J. M. Duran. 2011. Aquaponics: Integrating fish feeding rates and ion waste production for strawberry hydroponics. Spanish Journal of Agricultural Research 9 (2):537–45. doi: 10.5424/sjar/20110902-181-10.
  • Wang, M., Q. Peng, F. Zhou, W. Yang, Q. T. Dinh, and D. Liang. 2019a. Uptake kinetics and interaction of selenium species in tomato (Solanum lycopersicum L.) seedlings. Environmental Science and Pollution Research 26 (10):9730–8. doi: 10.1007/s11356-019-04182-6.
  • Wang, M., W. Yang, F. Zhou, Z. Du, M. Xue, T. Chen, and D. Liang. 2019b. Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.). Environmental Science and Pollution Research 26 (20):20475–84. doi: 10.1007/s11356-019-04717-x.
  • Yep, B., and Y. Zheng. 2019. Aquaponic trends and challenges – A review. Journal of Cleaner Production 228:1586–99. doi: 10.1016/j.jclepro.2019.04.290.
  • Zeid, I., Z. Gharib, S. Ghazi, and E. Ahmed. 2019. Promotive effect of ascorbic acid, gallic acid, selenium and nano-selenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. Journal of Plant Physiology & Pathology 7 (1):1–8. doi: 10.4172/2329-955X.1000193.
  • Zhao, F., Y. Zhang, Z. Li, J. Shi, G. Zhang, H. Zhang, and L. Yang. 2020. Vermicompost improves microbial functions of soil with continuous tomato cropping in a greenhouse. Journal of Soils and Sediments 20 (1):380–91. doi: 10.1007/s11368-019-02362-y.
  • Zhu, T., W.-R. Tan, X.-G. Deng, T. Zheng, D.-W. Zhang, and H.-H. Lin. 2015. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology 100:196–204. doi: 10.1016/j.postharvbio.2014.09.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.