444
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Tomato (Solanum lycopersicum) culture in vermi-aquaponic systems: III. Strategies for sustainable and economic development: Co-cultivation with aquatic species

ORCID Icon & ORCID Icon
Pages 1740-1756 | Received 01 Feb 2020, Accepted 16 Feb 2020, Published online: 16 Mar 2020

References

  • Abbas, H. H. 2006. Acute toxicity of ammonia to common carp fingerlings (Cyprinus carpio) at different pH levels. Pakistan Journal of Biological Sciences 9 (12):2215–21. doi: 10.3923/pjbs.2006.2215.2221.
  • Abdulrahma, N. M., and H. J. H. Ameen. 2014. Replacement of fishmeal with microalgae spirulina on common carp weight gain, meat and sensitive composition and survival. Pakistan Journal of Nutrition 13 (2):93–8. doi: 10.3923/pjn.2014.93.98.
  • Addy, M. M., F. Kabir, R. Zhang, Q. Lu, X. Deng, D. Current, R. Griffith, Y. Ma, W. Zhou, P. Chen, et al. 2017. Co-cultivation of microalgae in aquaponic systems. Bioresource Technology 245:27–34. doi: 10.1016/j.biortech.2017.08.151.
  • Ahmad, M. H., M. Abdel-Tawwab, and Y. A. E. Khattab. 2007. Growth response of silver carp, Hypophthalmichthys molitrix Val., to feed supplementation in earthen fish ponds. Journal of Applied Aquaculture 19 (1):25–37. doi: 10.1300/J028v19n01_03.
  • Al Dhanhani, M. A. 2018. Determination of the ideal plant density of tomato Solanum lycopersicum under an aquaponic production system with Tilapia Oreochromis aureus under UAE conditions. Aridland Agriculture (MSc Thesis 733). Department of Aridland Agriculture, United Arab Emirates University, Al Ain, UAE, 84 p.
  • Allen, K. M., H.-M. Habte-Tsion, K. R. Thompson, K. Filer, J. H. Tidwell, and V. Kumar. 2019. Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed. Scientific Reports 9 (1):6178. doi: 10.1038/s41598-019-41020-8.
  • Amini Khoeyi, Z., J. Seyfabadi, and Z. Ramezanpour. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International 20 (1):41–9. doi: 10.1007/s10499-011-9440-1.
  • Atta, M., A. Idris, A. Bukhari, and S. Wahidin. 2013. Intensity of blue LED light: A potential stimulus for biomass and lipid content in freshwater microalgae Chlorella vulgaris. Bioresource Technology 148:373–8. doi: 10.1016/j.biortech.2013.08.162.
  • Bakhshi, F., E. H. Najde Gerami, A. Imani, and K. Sarvi Moghanlou. 2016. EFfect of biofloc technology on growth performances, body composition and reduction of economic costs in intensive culture of common carp (Cyprinus carpio) juveniles. Journal of Veterinary Research 71 (2):163–9. In Persian with English Summary.
  • Barone, V., I. Puglisi, F. Fragalà, A. R. Lo Piero, F. Giuffrida, and A. Baglieri. 2019. Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. Journal of Applied Phycology 31 (1):465–70. doi: 10.1007/s10811-018-1518-y.
  • Bossier, P., and J. Ekasari. 2017. Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology 10 (5):1012–6. doi: 10.1111/1751-7915.12836.
  • CABI ISC. 2020. Centre for Agriculture and Biosciences International Invasive Species Compendium. Accessed January 16, 2020. http://www.cabi.org/isc/
  • Cheunbarn, T., and S. Cheunbarn. 2015. Cultivation of algae in vegetable and fruit canning industrial wastewater treatment effluent for tilapia (Oreochromis niloticus) feed supplement. International Journal of Agriculture and Biology 17 (3):653–7. doi: 10.17957/IJAB/17.3.14.502.
  • Chong, P. C., and T. Ito. 1982. Growth, fruit yield and nutrient absorption of tomato plant as influenced by solution temperature in nutrient film technique. Journal of the Japanese Society for Horticultural Science 51 (1):44–50. doi: 10.2503/jjshs.51.44.
  • Crab, R. 2010. Bioflocs technology: An integrated system for the removal of nutrients and simultaneous production of feed in aquaculture. (PhD Thesis). Ghent University, Belgium, 178 p.
  • Crab, R., T. Defoirdt, P. Bossier, and W. Verstraete. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 356–357:351–6. doi: 10.1016/j.aquaculture.2012.04.046.
  • da Silva Cerozi, B., and K. Fitzsimmons. 2017. Effect of dietary phytase on phosphorus use efficiency and dynamics in aquaponics. Aquaculture International 25 (3):1227–38. doi: 10.1007/s10499-016-0109-7.
  • da Silva, M. A., É. R. de Alvarenga, F. F. B. D. Costa, E. M. Turra, G. F. D. O. Alves, L. G. Manduca, S. C. M. de Sales, N. R. Leite, V. M. Bezerra, S. G. D. S. Moraes, et al. 2020. Feeding management strategies to optimize the use of suspended feed for Nile tilapia (Oreochromis niloticus) cultivated in bioflocs. Aquaculture Research 51 (2):605–15. doi: 10.1111/are.14408.
  • Dalsgaard, J., I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen. 2013. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquacultural Engineering 53:2–13. doi: 10.1016/j.aquaeng.2012.11.008.
  • Delgadillo-Díaz, M., M. Gullian-Klanian, O. Sosa-Moguel, E. Sauri-Duch, and L. F. Cuevas-Glory. 2019. Evaluation of physico-chemical characteristics, antioxidant compounds and antioxidant capacity in creole tomatoes (Solanum lycopersicum L. and S. pimpinellifolium L.) in an aquaponic system or organic soil. International Journal of Vegetable Science 25 (2):124–37. doi: 10.1080/19315260.2018.1487496.
  • Dong, X. S., Z. H. Wang, X. R. Huang, and X. J. Jiang. 2017. Recent discovery in nitrification: One-step nitrification and complete ammonia oxidizing microorganisms. Ying Yong Sheng Tai Xue Bao = the Journal of Applied Ecology 28 (1):345–52. (In Chinese with English Summary) doi: 10.13287/j.1001-9332.201701.015.
  • Eck, M., O. Körner, and M. H. Jijakli. 2019. Nutrient cycling in aquaponics systems. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future, eds. S. Goddek, A. Joyce, B. Kotzen, and G. M. Burnell, 231–46. Cham: Springer International Publishing, Springer. doi: 10.1007/978-3-030-15943-6_9.
  • El-Husseiny, O. M., A. M. A.-S. Goda, R. S. Mabroke, and M. Soaudy. 2018. Complexity of carbon sources and the impact on biofloc integrity and quality in tilapia (Oreochromis niloticus) tanks. AACL Bioflux 11 (3):846–55.
  • Emerenciano, M. G. C., L. R. Martínez-Córdova, M. Martínez-Porchas, and A. Miranda-Baeza. 2017. Biofloc technology (BFT): a tool for water quality management in aquaculture. In Water Quality, ed. H. Tutu, 91–109. London, UK: IntechOpen. doi: 10.5772/66416.
  • Fang, Y., X. Chen, Z. Hu, D. Liu, H. Gao, and L. Nie. 2018. Effects of hydraulic retention time on the performance of algal-bacterial-based aquaponics (AA): focusing on nitrogen and oxygen distribution. Applied Microbiology and Biotechnology 102 (22):9843–55. doi: 10.1007/s00253-018-9338-1.
  • FAOSTAT. 2017. FAOSTAT. Accessed January 13, 2020. http://www.fao.org/faostat/en/#data
  • Ferro, L., M. Colombo, E. Posadas, C. Funk, and R. Muñoz. 2019. Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. Journal of Applied Phycology 31 (4):2299–310. doi: 10.1007/s10811-019-1741-1.
  • Gallardo-Collí, A., C. I. Pérez-Rostro, and M. P. Hernández-Vergara. 2019. Reuse of water from biofloc technology for intensive culture of Nile tilapia (Oreochromis niloticus): effects on productive performance, organosomatic indices and body composition. International Aquatic Research 11 (1):43–55. doi: 10.1007/s40071-019-0218-9.
  • García-Ríos, L., A. Miranda-Baeza, M. G. Coelho-Emerenciano, J. A. Huerta-Rábago, and P. Osuna-Amarillas. 2019. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture 502:26–31. doi: 10.1016/j.aquaculture.2018.11.057.
  • Godlewska, K., I. Michalak, P. Pacyga, S. Baśladyńska, and K. Chojnacka. 2019. Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World Journal of Microbiology & Biotechnology 35 (6):80. doi: 10.1007/s11274-019-2653-6.
  • Gullian Klanian, M., M. Delgadillo Diaz, J. Aranda, and C. Rosales Juárez. 2018. Integrated effect of nutrients from a recirculation aquaponic system and foliar nutrition on the yield of tomatoes Solanum lycopersicum L. and Solanum pimpinellifolium. Environmental Science and Pollution Research 25 (18):17807–19. doi: 10.1007/s11356-018-1817-5.
  • Gullian Klanian, M., M. Delgadillo Díaz, M. J. Sánchez Solís, J. Aranda, and P. Moreno Moral. 2020. Effect of the content of microbial proteins and the poly-β-hydroxybutyric acid in biofloc on the performance and health of Nile tilapia (Oreochromis niloticus) fingerlings fed on a protein-restricted diet. Aquaculture 519:734872. doi: 10.1016/j.aquaculture.2019.734872.
  • Gullian-Klanian, M., and C. Arámburu-Adame. 2013. Performance of Nile tilapia Oreochromis niloticus fingerlings in a hyper-intensive recirculating aquaculture system with low water exchange. Latin American Journal of Aquatic Research 41 (1):150–62. doi: 10.103856/vol41-issue1-fulltext-12.
  • Hisano, H.,. J. Parisi, I. L. Cardoso, G. H. Ferri, and P. M. F. Ferreira. 2019b. Dietary protein reduction for Nile tilapia fingerlings reared in biofloc technology. Journal of the World Aquaculture Society: 11. In press. doi: 10.1111/jwas.12670.
  • Hisano, H.,. P. T. L. Barbosa, L. A. Hayd, and C. C. Mattioli. 2019a. Evaluation of Nile tilapia in monoculture and polyculture with giant freshwater prawn in biofloc technology system and in recirculation aquaculture system. International Aquatic Research 11 (4):335–46. doi: 10.1007/s40071-019-00242-2.
  • Jaime-Ceballos, B. J., A. Hernández-Llamas, T. Garcia-Galano, and H. Villarreal. 2006. Substitution of Chaetoceros muelleri by Spirulina platensis meal in diets for Litopenaeus schmitti larvae. Aquaculture 260 (1–4):215–20. doi: 10.1016/j.aquaculture.2006.06.002.
  • Jamali, H., A. Imani, D. Abdollahi, R. Roozbehfar, and A. Isari. 2015. Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: Effects on growth and survival of Pacific white shrimp, Litopenaeus vannamei, larvae. Probiotics and Antimicrobial Proteins 7 (2):118–25. doi: 10.1007/s12602-015-9189-3.
  • Jamali, H., N. Ahmadifard, and D. Abdollahi. 2015. Evaluation of growth, survival and body composition of larval white shrimp (Litopenaeus vannamei) fed the combination of three types of algae. International Aquatic Research 7 (2):115–22. doi: 10.1007/s40071-015-0095-9.
  • Ji, X., M. Jiang, J. Zhang, X. Jiang, and Z. Zheng. 2018. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresource Technology 247:44–50. doi: 10.1016/j.biortech.2017.09.074.
  • Jia, H., and Q. Yuan. 2016. Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science 2 (1):1275089. doi: 10.1080/23311843.2016.1275089.
  • Jiménez-Ojeda, Y. K., L. F. Collazos-Lasso, and J. A. Arias-Castellanos. 2018. Dynamics and use of nitrogen in Biofloc Technology-BFT. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux) 11 (4):1107–29.
  • Kaur, H., S. Bedi, V. P. Sethi, and A. S. Dhatt. 2018. Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. Journal of Plant Nutrition 41 (12):1547–54. doi: 10.1080/01904167.2018.1459689.
  • Kempen, E., G. A. Agenbag, and S. Deckers. 2017. Variations in water and macronutrient uptake of soilless tomato as affected by the nutrient solution composition. South African Journal of Plant and Soil 34 (2):139–48. doi: 10.1080/02571862.2016.1213321.
  • Kitzinger, K.,. H. Koch, S. Lücker, C. J. Sedlacek, C. Herbold, J. Schwarz, A. Daebeler, A. J. Mueller, M. Lukumbuzya, S. Romano, et al. 2018. Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. mBio 9 (4):e01186–18. doi: 10.1128/mBio.01186-18.
  • Kopp, R., T. Brabec, J. Mareš, E. Maršálková, and B. Maršálek. 2019. The utilization of algae with the aim to increase the fatty acid content in muscle of common carp (Cyprinus carpio L.). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 67 (1):91–9. doi: 10.11118/actaun201967010091.
  • Kumar, A., M. Kumari, and T. Dhami. 2019. Effect of different organic manure on the growth of Amur carp (Cyprinus carpio haematopterus) fingerlings with supplementary feed in the Tarai region of Uttarakhand. Journal of Entomology and Zoology Studies 7 (2):889–94.
  • Li, S.-F., X.-J. He, G.-C. Hu, W.-Q. Cai, X.-W. Deng, and P.-Y. Zhou. 2006. Improving growth performance and caudal fin stripe pattern in selected F6–F8 generations of GIFT Nile tilapia (Oreochromis niloticus L.) using mass selection. Aquaculture Research 37 (12):1165–71. doi: 10.1111/j.1365-2109.2006.01543.x.
  • Liang, Z., Y. Liu, F. Ge, Y. Xu, N. Tao, F. Peng, and M. Wong. 2013. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere 92 (10):1383–9. doi: 10.1016/j.chemosphere.2013.05.014.
  • Lima, E. C. R. d., R. L. d Souza, P. J. M. Girao, Í. F. M. Braga, and E. d S. Correia. 2018. Culture of Nile tilapia in a biofloc system with different sources of carbon. Revista Ciência Agronômica 49 (3):458–66. doi: 10.5935/1806-6690.20180052.
  • Lima, P. C. M., L. O. B. Silva, J. D. L. Abreu, S. M. B. C. Silva, W. Severi, and A. O. Gálvez. 2019. Tilapia cultivated in a low-salinity biofloc system supplemented with Chlorella vulgaris and differents molasses application rates. Boletim Do Instituto de Pesca 45 (4):e494491–411. doi: 10.20950/1678-2305.2019.45.4.494.
  • Maas, R. M., M. C. J. Verdegem, and J. W. Schrama. 2019. Effect of non-starch polysaccharide composition and enzyme supplementation on growth performance and nutrient digestibility in Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition 25 (3):622–32. doi: 10.1111/anu.12884.
  • Maboko, M. M., and C. P. Du Plooy. 2013. High-density planting of tomato cultivar’s with early decapitation of growing point increased yield in a closed hydroponic system. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 63 (8):676–82. doi: 10.1080/09064710.2013.851276.
  • Maboko, M. M., C. P. Du Plooy, and I. Bertling. 2011. Comparative performance of tomato cultivars cultivated in two hydroponic production systems. South African Journal of Plant and Soil 28 (2):97–102. doi: 10.1080/02571862.2011.10640019.
  • Mansouri Taee, H., M. Azimirad, E. Haghighi, M. Ebrahimi, Z. Ghasab Shiran, and N. Mahboubi Soufiani. 2017. The growth and production of grass carp (Ctenopharyngodon idella) and Common Carp (Cyprinus carpio) in mono and polyculture system. Journal of Animal Research (Iranian Journal of Biology) 29 (4):493–502. In Persian with English Summary).
  • Mariscal-Lagarda, M. M., and F. Páez-Osuna. 2014. Mass balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: A short communication. Aquacultural Engineering 58:107–12. doi: 10.1016/j.aquaeng.2013.12.003.
  • Mariscal-Lagarda, M. M., F. Páez-Osuna, J. L. Esquer-Méndez, I. Guerrero-Monroy, A.-R. Del Vivar, K. Y. Brito-Solano, D. N. López-Pérez, and R. Alonso-Rodríguez. 2014. Water quality in an integrated culture of white shrimp (Litopenaeus vannamei)-tomato (Lycopersicon esculentum) using low salinity groundwater in Sonora, Mexico. Experimental Agriculture 50 (2):306–19. doi: 10.1017/S0014479713000690.
  • Mariscal-Lagarda, M. M., F. Páez-Osuna, J. L. Esquer-Méndez, I. Guerrero-Monroy, A. R. del Vivar, and R. Félix-Gastelum. 2012. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture 366–367:76–84. doi: 10.1016/j.aquaculture.2012.09.003.
  • Martins, M. A., M. A. Poli, E. C. Legarda, I. C. Pinheiro, R. F. S. Carneiro, S. A. Pereira, M. L. Martins, P. Gonçalves, D. D. Schleder, and F. do Nascimento Vieira. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture 514:734517. doi: 10.1016/j.aquaculture.2019.734517.
  • Matos, Â. P., W. B. Ferreira, L. R. I. Morioka, E. H. S. Moecke, K. B. França, and E. S. Sant Anna. 2018. Cultivation of Chlorella vulgaris in medium supplemented with desalination concentrate grown in a pilot-scale open raceway. Brazilian Journal of Chemical Engineering 35 (4):1183–92. doi: 10.1590/0104-6632.20180354s20170338.
  • Mirzakhani, N., E. Ebrahimi, S. A. H. Jalali, and J. Ekasari. 2019. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C: N ratios. Aquaculture 512:734235. 1-10. doi: 10.1016/j.aquaculture.2019.734235.
  • Nivelle, R., V. Gennotte, E. J. K. Kalala, N. B. Ngoc, M. Muller, C. Mélard, and C. Rougeot. 2019. Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal. Plos ONE 14 (2):e0212504. doi: 10.1371/journal.pone.0212504.
  • Nozzi, V., A. Graber, Z. Schmautz, A. Mathis, and R. Junge. 2018. Nutrient management in aquaponics: Comparison of three approaches for cultivating lettuce, mint and mushroom herb. Agronomy 8 (3):27. doi: 10.3390/agronomy8030027.
  • Nuwansi, K. K. T., A. K. Verma, G. Rathore, C. Prakash, M. H. Chandrakant, and G. P. W. A. Prabhath. 2019. Utilization of phytoremediated aquaculture wastewater for production of koi carp (Cyprinus carpio var. koi) and gotukola (Centella asiatica) in an aquaponics. Aquaculture 507:361–9. doi: 10.1016/j.aquaculture.2019.04.053.
  • Pérez-Fuentes, J. A., M. P. Hernández-Vergara, C. I. Pérez-Rostro, and I. Fogel. 2016. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture 452:247–51. doi: 10.1016/j.aquaculture.2015.11.010.
  • Rakocy, J., M. P. Masser, and T. Losordo. 2016. Recirculating aquaculture tank production systems: Aquaponics - integrating fish and plant culture. Oklahoma Cooperative Extension Fact Sheets, SRAC-454(45), 1–16.
  • Ratcliff, W. C., S. V. Kadam, and R. F. Denison. 2008. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiology Ecology 65 (3):391–9. doi: 10.1111/j.1574-6941.2008.00544.x.
  • Reyes Lastiri, D., C. Geelen, H. J. Cappon, H. H. M. Rijnaarts, D. Baganz, W. Kloas, D. Karimanzira, and K. J. Keesman. 2018. Model-based management strategy for resource-efficient design and operation of an aquaponic system. Aquacultural Engineering 83:27–39. doi: 10.1016/j.aquaeng.2018.07.001.
  • Ruiz, P., J. M. Vidal, D. Sepúlveda, C. Torres, G. Villouta, C. Carrasco, F. Aguilera, N. Ruiz-Tagle, and H. Urrutia. 2020. Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems. Reviews in Aquaculture: 17. In press doi: 10.1111/raq.12392.
  • Samocha, T. M., A. L. Lawrence, C. A. Collins, F. L. Castille, W. A. Bray, C. J. Davies, P. G. Lee, and G. F. Wood. 2004. Production of the pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture 15 (3-4):1–19. doi: 10.1300/J028v15n03_01.
  • Scherholz, M. L., and W. R. Curtis. 2013. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnology 13 (1):1–15. doi: 10.1186/1472-6750-13-39.
  • Serra, C. R., E. M. Almeida, I. Guerreiro, R. Santos, D. L. Merrifield, F. Tavares, A. Oliva-Teles, and P. Enes. 2019. Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Scientific Reports 9 (1):6384. doi: 10.1038/s41598-019-42716-7.
  • Situmorang, M. L., P. De Schryver, K. Dierckens, and P. Bossier. 2016. Effect of poly-beta-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles. Veterinary Microbiology 182:44–9. doi: 10.1016/j.vetmic.2015.10.024.
  • Souza, R. L. D., E. C. R. D. Lima, F. P. D. Melo, M. G. P. Ferreira, and E. D. S. Correia. 2019. The culture of Nile tilapia at different salinities using a biofloc system. Revista Ciência Agronômica 50 (2):267–75. doi: 10.5935/1806-6690.20190031.
  • Stouvenakers, G., P. Dapprich, S. Massart, M. H. Jijakli, 2019. Plant pathogens and control strategies in aquaponics. In Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the future, eds. S. Goddek, A. Joyce, B. Kotzen, and G. M. Burnell, 353–78. Cham: Springer International Publishing, Springer. doi: 10.1007/978-3-030-15943-6_14.
  • Suhl, J., B. Oppedijk, D. Baganz, W. Kloas, U. Schmidt, and B. van Duijn. 2019. Oxygen consumption in recirculating nutrient film technique in aquaponics. Scientia Horticulturae 255:281–91. doi: 10.1016/j.scienta.2019.05.033.
  • Suhl, J., D. Dannehl, D. Baganz, U. Schmidt, and W. Kloas. 2018. An innovative suction filter device reduces nitrogen loss in double recirculating aquaponic systems. Aquacultural Engineering 82:63–72. doi: 10.1016/j.aquaeng.2018.06.008.
  • Vieira, R. B., L. M. Barreto, K. Z. Fonseca, M. S. Lordelo, F. R. d Souza, and N. S. Evangelista-Barreto. 2019. Zootechnical performance evaluation of the use of biofloc technology in Nile tilapia fingerling production at different densities. Boletim Do Instituto de Pesca 45 (4):1–9. doi: 10.20950/1678-2305.2019.45.4.505.
  • Yang, W., J. Zhu, C. Zheng, B. Lukwambe, R. Nicholaus, K. Lu, and Z. Zheng. 2019b. Succession of phytoplankton community during intensive shrimp (Litopenaeus vannamei) cultivation and its effects on cultivation systems. Aquaculture 520:734733. doi: 10.1016/j.aquaculture.2019.734733.
  • Yang, W., Z. Zheng, K. Lu, C. Zheng, Y. Du, J. Wang, and J. Zhu. 2019a. Manipulating the phytoplankton community has the potential to create a stable bacterioplankton community in a shrimp rearing environment. Aquaculture 520:734789. doi: 10.1016/j.aquaculture.2019.734789.
  • Yep, B., and Y. Zheng. 2019. Aquaponic trends and challenges – A review. Journal of Cleaner Production 228:1586–99. doi: 10.1016/j.jclepro.2019.04.290.
  • Zeinab, A. M., T. A. Ali, and M. F. Osman. 2019. Effect of Spirulina (Arthrospira platensis) and Nannochloropsis (Nannochloropsis gaditana) supplementation on growth performance, feed utilization and carcass composition of Nile tilapia (Oreochromis niloticus). Arab Universities Journal of Agricultural Sciences 27 (1):419–29. doi: 10.21608/ajs.2019.43580.
  • Zhao, S., W. Ding, S. Zhao, and J. Gu. 2019. Adaptive neural fuzzy inference system for feeding decision-making of grass carp (Ctenopharyngodon idellus) in outdoor intensive culturing ponds. Aquaculture 498:28–36. doi: 10.1016/j.aquaculture.2018.07.068.
  • Zheng, M., M. Wang, Z. Zhao, N. Zhou, S. He, S. Liu, J. Wang, and X. Wang. 2019. Transcriptional activity and diversity of comammox bacteria as a previously overlooked ammonia-oxidizing prokaryote in full-scale wastewater treatment plants. Science of the Total Environment 656:717–22. doi: 10.1016/j.scitotenv.2018.11.435.
  • Zhu, S., S. Huo, and P. Feng. 2019. Developing designer microalgal consortia: A Suitable approach to sustainable wastewater treatment. In Microalgae biotechnology for development of biofuel and wastewater treatment, eds. M. A. Alam and Z. Wang, 569–98. Singapore: Springer Singapore. doi: 10.1007/978-981-13-2264-8_22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.