212
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preliminary evaluation of eggshells as a source of phosphate on hydroponically grown tomato (Solanum lycopersicum L.) seedlings

, , , , , & show all
Pages 1852-1861 | Received 18 Jul 2019, Accepted 11 Feb 2020, Published online: 20 Apr 2020

References

  • Beddington, J. 2010. Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society B 365 (1537):61–71. doi:10.1098/rstb.2009.0201.
  • Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analitycal Biochemistry 72:248–254.
  • Celletti, S., Pii, Y., Mimmo, T., Cesco, S., and Astolfi, S. 2016. The characterization of the adaptive responses of durum wheat to different Fe availability highlights an optimum Fe requirement threshold. Plant Physiology Biochemistry 109:300–7. doi:10.1016/j.plaphy.2016.10.010.
  • Chen, S., Xu, M., Ma, Y., and Yang, J. 2007. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety 67 (2):278–85. doi:10.1016/j.ecoenv.2006.06.008.
  • Christmas, R. B., and Harms, R. H. 1976. Utilization of egg shells and phosphoric acid as a source of phosphorus and calcium in the diet of White Leghorn cockerels. Poultry Science 55 (1):264–67. doi:10.3382/ps.0550264.
  • De Angelis, G., Medeghini, L., Conte, A. M., and Mignardi, S. 2017. Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production 164:1497–506. doi:10.1016/j.jclepro.2017.07.085.
  • Domonkos, I., Kis, M., Gombos, Z., and Ughy, B. 2013. Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research 52 (4):539–61. doi:10.1016/j.plipres.2013.07.001.
  • Esteban, R., Barrutia, O., Artetxe, U., Fernández‐Marín, B., Hernández, A., and García‐Plazaola, J. I. 2015. Internal and external factors affecting photosynthetic pigment composition in plants: a meta‐analytical approach. New Phytologist 206:268–80. doi:10.1111/nph.13186.
  • Farooq, M., Siddique, K. H., Rehman, H., Aziz, T., Lee, and D. J., Wahid, A. 2011. Rice direct seeding: experiences, challenges and opportunities. Soil and Tillage Research 111 (2):87–98. doi:10.1016/j.still.2010.10.008.
  • Gergely, G., Wéber, F., Lukács, I., Tóth, A. L., Horváth, Z. E., Mihály, J., and Balázsi, C. 2010. Preparation and characterization of hydroxyapatite from eggshell. Ceramics International 36 (2):803–806. doi:10.1016/j.ceramint.2009.09.020.
  • Hernández, I., and Munné-Bosch, S. 2015. Linking phosphorus availability with photo-oxidative stress in plants. Journal of Experimental Botany 66 (10):2889–900. doi:10.1093/jxb/erv056.
  • Kawentar, W. A., and Budiman, A. 2013. Synthesis of biodiesel from second-used cooking oil. Energy Procedia 32:190–99. doi:10.1016/j.egypro.2013.05.025.
  • Lichtenthaler, H. K., and Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11 (5):591–92. doi:10.1042/bst0110591.
  • Marschner, H. 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. London: Elsevier.
  • Nadira, U. A., Ahmed, I. M., Wu, F., and Zhang G. 2016. The regulation of root growth in response to phosphorus deficiency mediated by phytohormones in a Tibetan wild barley accession. Acta Physiol Plant 38: 105. doi:10.1007/s11738-016-2124-8
  • Nussaume, L., Kanno, S., Javot, H., Marin, E., Nakanishi, T. M., and Thibaud, M. C. 2011. Phosphate import in plants: focus on the PHT1 transporters. Frontiers in Plant Science 2:83.
  • Powlson, D. S., Addiscott, T. M., Benjamin, N., Cassman, K. G., de Kok, T. M., van Grinsven, H., L’Hirondel, J. L., Avery, A. A., and van Kessel, C. 2006. When does nitrate become a risk for humans? Journal of Environmental Quality 37:291–95. doi:10.2134/jeq2007.0177.
  • Prabhu, M., and Mutnuri, S. 2014. Cow urine as a potential source for struvite production. International Journal of Recycling of Organic Waste in Agriculture 3:49. doi:10.1007/s40093-014-0049-z.
  • Quina, M. J., Soares, M. A. R., and Quinta-Ferreira, R. 2017. Applications of industrial eggshell as a valuable anthropogenic resource. Resources, Conservation and Recycling 123:176–86. doi:10.1016/j.resconrec.2016.09.027.
  • Scherr, S. J. 1999. Soil degradation: a threat to developing-country food security in 2020? Food, Agriculture, and the Environment Discussion Paper, International Food Policy Research Institute, Washington, D.C. ,
  • Smil, V. 2000. Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment 25:53–88. doi:10.1146/annurev.energy.25.1.53.
  • Stadelman, W. J. 2000. Eggs and egg products. In Encyclopedia of food science and technology, eds. F. J. Francis, 2nd ed., 593–599. New York: John Wiley and Sons.
  • Syers, J. K., Johnston, A. E., and Curtin, D. 2008. Efficiency of soil and fertilizer phosphorus: reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer and Plant Nutrition Bulletin 18:108.
  • Tilman, D. 1997. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78 (1):81–92. doi:10.1890/0012-9658(1997)078[0081:CIRLAG.2.0.CO;2]
  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418 (6898):671. doi:10.1038/nature01014.
  • Vance, C. P., Uhde‐Stone, C., and Allan, D. L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157 (3):423–47. doi:10.1046/j.1469-8137.2003.00695.x.
  • Wittmann, C., Aschan, G., and Pfanz, H. 2001. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic and Applied Ecology 2 (2):145–54. doi:10.1078/1439-1791-00047.
  • Zhang, F. S., Römheld, V., and Marschner, H. 1991. Role of the root apoplasm for iron acquisition by wheat plants. Plant Physiology 97 (4):1302–305. doi:10.1104/pp.97.4.1302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.