197
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The agronomic benefit of phosphate rock application with elemental sulfur depends on the reactivity and fertilizer placement

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2773-2784 | Received 29 Feb 2020, Accepted 24 Jun 2020, Published online: 15 Jul 2020

References

  • Association of Official Analytical Chemists (AOAC). 1999. Official methods of analysis. 5th revision, vol. I, 16th ed. Arlington: Association of Official Analytical Chemists.
  • Bekele, T., B. J. Cino, P. A. I. Ehlert, A. A. Van Der Maas, and A. Van Diest. 1983. An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates. Plant and Soil 75 (3):361–78. doi: 10.1007/BF02369971.
  • Bustamante, M. A., F. G. Ceglie, A. Aly, H. T. Mihreteab, C. Ciaccia, and F. Tittarelli. 2016. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. Journal of Environmental Management 182:557–63. doi: 10.1016/j.jenvman.2016.08.016.
  • Cheng, Y. C., R. Y. Peng, J. C. C. Su, and D. Y. Lo. 1999. Mechanism and kinetics of elemental sulfur oxidation by thiobacillus thiooxidans in batch fermenter. Environmental Technology 20 (9):933–42. doi: 10.1080/09593332008616888.
  • Chien, S. H. 1977. Dissolution of phosphate rocks in a flooded acid soil. Soil Science Society of America Journal 41 (6):1106–9. doi: 10.2136/sssaj1977.03615995004100060018x.
  • Chien, S. H., and R. G. Menon. 1995a. Agronomic evaluation of modified phosphate rock products - IFDS's experience. Fertilizer Research 41 (3):197–209. doi: 10.1007/BF00748309.
  • Chien, S. H., and R. G. Menon. 1995b. Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fertilizer Research 41 (3):227–34. doi: 10.1007/BF00748312.
  • Chien, S. H., R. G. Menon, and K. S. Billingham. 1996. Phosphorus availability from phosphate rock as enhanced by water-soluble phosphorus. Soil Science Society of America Journal 60 (4):1173–7. doi: 10.2136/sssaj1996.03615995006000040031x.
  • Chien, S. H., L. I. Prochnow, and R. Mikkelsen. 2010. Agronomic use of phosphate rock for direct application. Better Crops 94:21–3.
  • Chien, S. H., L. I. Prochnow, S. Tu, and C. S. Snyder. 2011. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review. Nutrient Cycling in Agroecosystems 89 (2):229–55. doi: 10.1007/s10705-010-9390-4.
  • Chung, W. J., J. J. Griebel, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, et al. 2013. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chemistry 5 (6):518–24. doi: 10.1038/nchem.1624.
  • Corrêa, R. M., C. W. A. Do Nascimento, S. Souza, F. J. Freire, and G. B. Da Silva. 2005. Gafsa rock phosphate and triple superphosphate for dry matter production and P uptake by corn. Scientia Agricola 62 (2):159–64. doi: 10.1590/S0103-90162005000200011.
  • Degryse, F., B. Ajiboye, R. Baird, R. C. Da Silva, and M. J. McLaughlin. 2016a. Oxidation of elemental sulfur in granular fertilizers depends on the soil-exposed surface area. Soil Science Society of America Journal 80 (2):294–305. doi: 10.2136/sssaj2015.06.0237.
  • Degryse, F., B. Ajiboye, R. Baird, R. C. Da Silva, and M. J. McLaughlin. 2016b. Availability of fertiliser sulphate and elemental sulphur to canola in two consecutive crops. Plant and Soil 398 (1–2):313–25. doi: 10.1007/s11104-015-2667-2.
  • Embrapa. 2018. Brazilian soil classification system, vol. 531, 5th ed. Brasília: Embrapa Solos.
  • Evans, J., L. McDonald, and A. Price. 2006. Application of reactive phosphate rock and sulphur fertilisers to enhance the availability of soil phosphate in organic farming. Nutrient Cycling in Agroecosystems 75 (1–3):233–46. doi: 10.1007/s10705-006-9030-1.
  • Evans, J., and A. Price. 2009. Influence of rates of reactive phosphate rock and sulphur on potentially available phosphorous in organically managed soils in the South-Eastern Near-Mediterranean cropping region of Australia. Nutrient Cycling in Agroecosystems 84 (2):105–18. doi: 10.1007/s10705-008-9230-y.
  • Flach, E. N., W. Quak, and A. Vandiest. 1987. A comparison of the rock phosphate-mobilizing capacities of various crop species. Tropical Agriculture 64:347–52.
  • Friesen, D. K., I. M. Rao, R. J. Thomas, A. Oberson, and J. I. Sanz. 1997. Phosphorus acquisition and cycling in crop and pasture systems in low fertility tropical soils. Plant and Soil 196 (2):289–94. [Mismatch] doi: 10.1023/A:1004226708485.
  • Fuente, R. G., C. Carrion, S. Botella, F. Fornes, V. Noguera, and M. Abad. 2007. Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology 98 (18):3561–9. doi: 10.1016/j.biortech.2006.11.008.
  • Germida, J. J., and H. H. Janzen. 1993. Factors affecting the oxidation of elemental sulfur in soils. Fertilizer Research 35 (1–2):101–14. doi: 10.1007/BF00750224.
  • Goedert, W. J., and E. Lobato. 1984. Agronomic evaluation of phosphates in a cerrado soil. Revista Brasileira de Ciência Do Solo 8:97–102.
  • Horowitz, N., and E. J. Meurer. 2007. Relationship between soil attributes and elemental sulfur oxidation in 42 soil samples from Brazil. Revista Brasileira de Ciência Do Solo 31 (3):455–63. [Mismatch] doi: 10.1590/S0100-06832007000300005.
  • Hu, Z. Y., J. D. Beaton, Z. H. Cao, and A. Henderson. 2002. Sulfate formation and extraction from Red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems. Communications in Soil Science and Plant Analysis 33 (11–12):1779–97. doi: 10.1081/CSS-120004822.
  • Khasawneh, F. E., and E. C. Doll. 1978. The use of phosphate rock for direct application to soils. Advances in Agronomy 30:159–206. doi: 10.1016/S0065-2113(08)60706-3.
  • Larsen, S. 1952. The use of P32 in studies on the uptake of phosphorus by plants. Plant and Soil 4 (1):1–10. doi: 10.1007/BF01343505.
  • Lehr, J. R., and G. H. McClellan. 1972. A revised laboratory reactivity scale for evaluating phosphate rocks for direct application. Bull. Y-43. Muscle Shoals, AL: Tennessee Valley Authority, National Fertilizer Development Center.
  • Leikam, D. F., and F. P. Achorn. 2005. Phosphate fertilizers: Production, characteristics, and technologies. In Phosphorus: Agriculture and the environment, ASA, CSSA, SSSA, Agronomy Monografy 46, ed. T. J. Sims and A. N. Sharpley, 23–50. Madison: American Society of Agronomy.
  • Malavolta, E., G. C. Vitti, and S. A. Oliveira. 1997. Avaliação do Estado Nutricional de Plantas. 2nd ed. Piracicaba: Potafos.
  • McCready, R. G. L., and H. R. Krouse. 1982. Sulfur isotope fractionation during the oxidation of elemental sulfur by thiobacilli in a solonetzic soil. Canadian Journal of Soil Science 62 (1):105–10. doi: 10.4141/cjss82-012.
  • Prochnow, L. I., S. H. Chien, G. Carmona, and J. Henao. 2004. Greenhouse evaluation of phosphorus sources produced from a low-reactive Brazilian phosphate rock. Agronomy Journal 96 (3):1–768. doi: 10.2134/agronj2004.0761.
  • Rajan, S. S. 2004. Ways of improving the agronomic effectiveness of phosphate rocks. In Use of phosphate rocks for sustainable agriculture, ed. F. Zapata and R. N. Roy, 85–97. Rome: FAO.
  • Rajan, S. S. S., J. H. Watkinson, and A. G. Sinclair. 1996. Phosphate rocks for direct application to soils. Advances in Agronomy 57:77–159. doi: 10.1016/S0065-2113(08)60923-2.
  • Roy, E. D., P. D. Richards, L. A. Martinelli, L. Della Coletta, S. R. M. Lins, F. F. Vazquez, E. Willig, S. A. Spera, L. K. VanWey, and S. Porder. 2016. The phosphorus cost of agricultural intensification in the tropics. Nature Plants 2 (5):16043. doi: 10.1038/nplants.2016.43.
  • Scherer, H. W. 2009. Sulfur in soils. Journal of Plant Nutrition and Soil Science 172:326–35. doi: 10.1002/jpln.200900037.
  • Smyth, T. J., and P. A. Sanchez. 1982. Phosphate rock dissolution and availability in Cerrado soils as affected by phosphorus sorption capacity. Soil Science Society of America Journal 46 (2):339–45. doi: 10.2136/sssaj1982.03615995004600020051x.
  • Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service.
  • Stanisławska-Glubiak, E., J. Korzeniowska, J. Hoffmann, H. Górecka, W. Jóźwiak, and G. Wiśniewska. 2014. Effect of sulphur added to phosphate rock on solubility and phytoavailability of phosphorus. Polish Journal of Chemical Technology 16 (1):81–5. doi: 10.2478/pjct-2014-0014.
  • Toledo, M. C. M., S. L. R. Lenharo, V. C. Ferrari, F. Fontan, P. De Parseval, and G. Leroy. 2004. The compositional evolution of apatite in the weathering profile of the Catalao I alkaline-carbonatitic complex, Goias, Brazil. The Canadian Mineralogist 42 (4):1139–58. doi: 10.2113/gscanmin.42.4.1139.
  • Ullah, I., G. Jilani, K. S. Khan, M. S. Akhtar, and M. Rasheed. 2014. Sulfur oxidizing bacteria from sulfur rich ecologies exhibit high capability of phosphorous solubilization. International Journal of Agricultural and Biological 16:550–6.
  • van Raij, B., and H. Cantarella. 1997. Maize. In Recomendações de adubação e calagem para o estado de São Paulo, boletim técnico no. 100, ed. B. Van Raij, H. Cantarella, J. A. Quaggio, and A. M. C. Furlani. 2nd ed. Campinas, Brasil: Instituto Agronômico.
  • van Raij, B., J. C. Andrade, H. Cantarella, and J. A. Quaggio. 2001. Analise química para avaliação da fertilidade de solos tropicais, 285. Campinas: Instituto Agronômico.
  • Van Ray, B., and A. Van Diest. 1979. Utilization of phosphate from different sources by six plant species. Plant and Soil 51 (4):577–89. doi: 10.1007/BF02277578.
  • Vose, P. B. 1980. Introduction to nuclear techniques in agronomy plant biology. London: Pergamon Press.
  • Wainwright, M. 1984. Sulfur oxidation in soils. Advances in Agronomy 37:349–96. doi: 10.1016/S0065-2113(08)60458-7.
  • Zapata, F., and R. N. Roy. 2004. Use of phosphate rocks for sustainable agriculture. FAO Fertilizer and Plant Nutrition Bulletin 13 :148.
  • Zhao, C., F. Degryse, V. Gupta, and M. J. McLaughlin. 2015. Elemental sulfur oxidation in Australian cropping soils. Soil Science Society of America Journal 79 (1):89–96. doi: 10.2136/sssaj2014.08.0314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.