143
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effect of nitrate concentration on plant growth and anthocyanin accumulation in the ornamental bromeliad Alcantarea imperialis

, , , , &
Pages 181-195 | Received 10 Nov 2019, Accepted 23 Jul 2020, Published online: 21 Aug 2020

References

  • Amaral, T. L., J. M. Jasmim, P. I. Nahoum, C. B. Freitas, and C. S. Sales. 2009. Nitrogen and potassium fertilization of Bromeliaceae grown in coconut fiber and cattle manure. Horticultura Brasileira 27 (3):286–9. doi: 10.1590/S0102-05362009000300004.
  • Anderson, R., and P. Ryser. 2015. Early autumn senescence in red maple (Acer rubrum L.) is associated with high leaf anthocyanin content. Plants (Basel, Switzerland) 4 (3):505–22. doi: 10.3390/plants4030505.
  • Andrade, S. V., and V. Tamaki. 2016. In vitro growth of Nidularium minutum Mez (Bromeliaceae) in different concentrations of nitrogen, phosphorus, potassium, and calcium. Journal of Plant Nutrition 39 (11):1634–43. doi: 10.1080/01904167.2016.1161775.
  • Aoyama, E. M., L. M. Versieux, C. C. Nievola, and S. C. Mazzoni-Viveiros. 2012. Evaluating the effectiveness of the propagation of Alcantarea imperialis (Bromeliaceae) cultivated in vitro and ex vitro. Rodriguésia 63 (2):321–31. doi: 10.1590/S2175-78602012000200007.
  • Azuma, A., H. Yakushiji, Y. Koshita, and S. Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236 (4):1067–80. doi: 10.1007/s00425-012-1650-x.
  • Bogs, J., A. Ebadi, D. McDavid, and S. P. Robinson. 2006. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiology 140 (1):279–91. doi: 10.1104/pp.105.073262.
  • Bongue-Bartelsman, M., Phillips, D. A., and D. A. 1995. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiology and Biochemistry 33:539–46.
  • Broun, P. 2005. Transcriptional control of flavonoid biosynthesis: A complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Current Opinion in Plant Biology 8 (3):272–9. doi: 10.1016/j.pbi.2005.03.006.
  • Carvalho, A. P. F., M. M. C. Bustamante, A. R. Kozovits, and G. P. Asner. 2007. Seasonal variations in leaf pigments and nutrients in “cerrado” species with different phenological patterns. Brazilian Journal of Botany 30:19–27.
  • Carvalho, V., D. S. Santos, and C. C. Nievola. 2014. In vitro storage under slow growth and ex vitro acclimatization of the ornamental bromeliad Acanthostachys strobilacea. South African Journal of Botany 92:39–43.
  • Close, D. C., and C. L. Beadle. 2003. The ecophysiology of foliar anthocyanin. The Botanical Review 69 (2):149–61. doi: 10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2.
  • Cruz, B. P., L. M. Chedier, P. H. P. Peixoto, R. L. Fabri, and D. S. Pimenta. 2012. Effects of light intensity on the distribution of anthocyanins in Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers. Anais da Academia Brasileira de Ciencias 84 (1):211–7. doi: 10.1590/S0001-37652012005000014.
  • Deroles, S. 2008. Anthocyanin biosynthesis in plant cell cultures: A potential source of natural colourants. In Anthocyanins, ed. Winefield C., K. Davies, and K. Gould. New York, NY: Springer. doi:10.1007/978-0-387-77335-3_5.
  • Do, C. B., and F. Cormier. 1990. Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Reports 9 (3):143–6. doi: 10.1007/BF00232091.
  • Dougall, D. K., and G. C. Frazier. 1989. Nutrient utilization during biomass and anthocyanin accumulation in suspension cultures of wild carrot cells. Plant Cell, Tissue and Organ Culture 18 (1):95–104. doi: 10.1007/BF00033468.
  • Fageria, N. K., and A. Moreira. 2011. The role of mineral nutrition on root growth of crop plants. In Advances in agronomy, Vol. 110, ed. D. L. Sparks, 251–331. Burlington: Academic Press.
  • Ferreira, C. A., P. D. O. Paiva, T. M. Rodrigues, D. P. Ramos, J. G. Carvalho, and R. Paiva. 2007. Development of plantlets of bromeliad (Neoregelia cruenta) cultivated in different substrates and leaf fertilizers. Science and Agrotechnology 3:666–71.
  • Giehl, R. F. H., and N. von Wirén. 2014. Root nutrient foraging. Plant Physiology 166 (2):509–17. doi: 10.1104/pp.114.245225.
  • Gould, K. S. 2004. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. Journal of Biomedicine & Biotechnology 2004 (5):314–20. doi: 10.1155/S1110724304406147.
  • Gould, K. S., S. O. Neill, and T. C. Vogelmann. 2002. A unified explanation for anthocyanins in leaves? Advances in Botanical Research 37:167–92.
  • Gruber, B. D., R. F. H. Giehl, S. Friedel, and N. von Wirén. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology 163 (1):161–79. doi: 10.1104/pp.113.218453.
  • Gu, J., Z. Zhou, Z. Li, Y. Chen, Z. Wang, and H. Zhang. 2017. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Research 200:58–70. doi: 10.1016/j.fcr.2016.10.008.
  • Hatier, J.-H., and K. S. Gould. 2007. Black coloration in leaves of Ophiopogon planiscapus “Nigrescens”. Leaf optics, chromaticity, and internal light gradients. Functional Plant Biology : FPB 34 (2):130–8. doi: 10.1071/FP06220.
  • Hikosaka, K., and Y. Osone. 2009. A paradox of leaf-trait convergence: Why is leaf nitrogen concentration higher in species with higher photosynthetic capacity. Journal of Plant Research 122 (3):245–51. doi: 10.1007/s10265-009-0222-z.
  • Hou, W., M. Tränkner, J. Lu, J. Yan, S. Huang, T. Ren, R. Cong, and X. Li. 2020. Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Frontiers in Plant Science 11:165–13. doi: 10.3389/fpls.2020.00165.
  • Kanashiro, S., R. C. S. Ribeiro, A. N. Gonçalves, V. A. Demétrio, T. Jocys, and A. R. Tavares. 2009. Effect of calcium on the in vitro growth of Aechmea blanchetiana (Baker) L. B. Smith plantlets. Journal of Plant Nutrition 32 (5):867–77. doi: 10.1080/01904160902790341.
  • Karageorgou, P., and Y. Manetas. 2006. The importance of being red when young: Anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiology 26 (5):613–21. doi: 10.1093/treephys/26.5.613.
  • Koike, T. 2004. Autumn coloration, carbon acquisition and leaf senescence. In Plant cell death processes, ed. L. D. Noodén, 392. Michigan: Departament of Biology, University of Michigan. Elsevier Academic Press.doi: 10.1016/B978-0-12-520915-1.X5000-0.
  • Kong, J. M., L. S. Chia, N. K. Goh, T. F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64 (5):923–33. doi: 10.1016/j.phytochem.2003.06.001.
  • Kurita, F. M. K., and V. Tamaki. 2014. In vitro growth of the bromeliad Alcantarea imperialis (Carrière) Harms with different concentrations of nitrogen. Acta Scientiarum. Biological Sciences 36 (3):279–85. doi: 10.4025/actascibiolsci.v36i3.22933.
  • Kurita, F. M. K. 2011. In vitro growth of bromeliad Alcantarea imperialis (Carrière) Harms in different concentrations of nitrogen, phosphorus, potassium, and calcium. Master’s thesis, Institute of Botany - Secretary of the Environment of São Paulo State.
  • Kurita, F. M. K. 2015. Assimilation of different nitrogen sources in the induction of multiplication of bromeliad Alcantarea imperialis (Carrière) Harms cultivated in vitro. PhD thesis, Institute of Botany - Secretary of the Environment of São Paulo State.
  • Larbat, R., K. M. Olsen, R. Slimestad, T. Løvdal, C. Bénard, M. Verheul, F. Bourgaud, C. Robin, and C. Lillo. 2012. Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry 77:119–28. doi: 10.1016/j.phytochem.2012.02.004.
  • Liang, J., and J. He. 2018. Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications 498 (4):946–53. doi: 10.1016/j.bbrc.2018.03.087.
  • Lichtenthaler, H. K., and C. Buschmann. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS. Current Protocols in Food Analytical Chemistry 1 (1):F4.3.1–F4.3.8. doi: 10.1002/0471142913.faf0403s01.
  • Lopez-Cantarero, I., F. A. Lorente, and L. Romero. 1994. Are chlorophylls good indicators of nitrogen and phosphorus levels. Journal of Plant Nutrition 17 (6):979–90. ? doi: 10.1080/01904169409364782.
  • Manetti, L. M., R. H. Delaporte, and A. Laverde. Jr., 2009. Secondary metabolites from Bromeliaceae family. Química Nova 32 (7):1885–97. doi: 10.1590/S0100-40422009000700035.
  • Marschner, H. 2012. Mineral nutrition of higher plants. 3rd ed. London: Academic Press, 672.
  • Martinelli, G., and M. A. Moraes. 2013. Red book of the flora of Brazil. 1st ed. Rio de Janeiro: Andrea Jakobsson: Botanical Garden Research Institute of Rio de Janeiro - Brazil, 1100.
  • Mercier, H., and G. B. Kerbauy. 1994. In vitro culture of Vriesea hieroglyphica, an endangered bromeliad from the Brazilian Atlantic Forest. Journal of the Bromeliad Society 44:120–4.
  • Mollo, L., M. C. M. Martins, V. F. Oliveira, C. C. Nievola, and R. C. L. Ribeiro. 2011. Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC) 107 (1):141–9. doi: 10.1007/s11240-011-9966-y.
  • Munnè-Bosch, S., and P. Lalueza. 2007. Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions. Planta 225 (4):1039–49. doi: 10.1007/s00425-006-0412-z.
  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15 (3):473–97. doi: 10.1111/j.1399-3054.1962.tb08052.x.
  • Negrelle, R. R. B., A. Anacleto, and D. Mitchell. 2011. Bromeliad ornamental species: Conservation issues and challenges related to commercialization. Acta Scientiarum 34:91–100.
  • Nievola, C. C., H. Mercier, and N. Majerowicz. 2001. Levels of nitrogen assimilation in bromeliads with different growth habitats. Journal of Plant Nutrition 24 (9):1387–98. doi: 10.1081/PLN-100106989.
  • Oliveira, A. F., L. Mercenaro, A. Del Caro, L. Pretti, and G. Nieddu. 2015. Distinctive anthocyanin accumulation responses to temperature and natural UV radiation of two field-grown Vitis vinifera L. cultivars. Molecules 20 (2):2061–80. doi: 10.3390/molecules20022061.
  • Passeri, V., R. Koes, and F. M. Quattrocchio. 2016. New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles. Frontiers in Plant Science 7:153–9. doi: 10.3389/fpls.2016.00153.
  • Ponmozhi, P., Geethá, M. Kumar, M. D., and P. S. 2011. Extraction of anthocyanin and analysing its antioxidant properties from Pithecellobium dulce fruit pericarp. Asian Journal of Pharmaceutical and Clinical Research 4:41–5.
  • Prado, R. M. 2008. Plant nutrition. São Paulo, Brazil: UNESP, 407.
  • Rodrigues, T. M., P. D. O. Paiva, C. R. Rodrigues, J. G. Carvalho, C. A. Ferreira, and R. Paiva. 2004. Development of imperial bromeliad (Alcantarea imperialis) in different substrates. Ciência e Agrotecnologia 28 (4):757–63. doi: 10.1590/S1413-70542004000400005.
  • Rorie, R. L., L. C. Purcell, M. Mozaffari, D. E. Karcher, C. A. King, M. C. Marsh, and D. E. Longer. 2011. Association of “Greenness” in corn with yield and leaf nitrogen concentration. Agronomy Journal 103 (2):529–35. doi: 10.2134/agronj2010.0296.
  • Saito, N., and J. B. Harborne. 1983. A cyanidin glycoside giving scarlet coloration in plants of the bromeliaceae. Phytochemistry 22 (8):1735–40. doi: 10.1016/S0031-9422(00)80261-7.
  • Saleem, M. F., B. L. Ma, H. Voldeng, and T. Wang. 2010. Nitrogen nutrition on leaf chlorophyll, canopy reflectance, grain protein and grain yield of wheat varieties with contrasting grain protein concentration. Journal of Plant Nutrition 33 (11):1681–95. doi: 10.1080/01904167.2010.496891.
  • Sarasan, V., R. Cripps, M. M. Ramsay, C. Atherton, M. Mcmichen, G. Prendergast, and J. K. Rowntree. 2006. Conservation in vitro of threatened plants: Progress in the past decade. In Vitro Cellular & Developmental Biology - Plant 42 (3):206–14. doi: 10.1079/IVP2006769.
  • Scogin, R. 1985. Floral Anthocyanins in the genus Puya. Biochemical Systematics and Ecology 13 (4):387–9. doi: 10.1016/0305-1978(85)90082-1.
  • Shan, A. Y. K. V., L. E. M. Oliveira, L. T. S. Bonome, and A. C. Mesquita. 2012. Metabolic assimilation of nitrogen in rubber tree seedlings grown with nitrate or ammonium. Pesquisa Agropecuária Brasileira 47 (6):754–62. doi: 10.1590/S0100-204X2012000600004.
  • Shi, M.-Z., and D.-Y. Xie. 2010. Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions. Planta 231 (6):1385–400. doi: 10.1007/s00425-010-1142-9.
  • Silva Júnior, J. M., M. Rodrigues, E. M. De Castro, S. K. V. Bertolucci, and M. Pasqual. 2013. Changes in anatomy and chlorophyll synthesis in orchids propagated in vitro in the presence of urea. Acta Scientiarum. Agronomy 35 (1):65–72. doi: 10.4025/actasciagron.v35i1.15356.
  • Silva, P. P. A., F. M. K. Kurita, and V. Tamaki. 2012. Growth of bromeliad Ananas ananassoides in different concentrations of nitrogen. Communications in Plant Sciences 2:109–11.
  • Silva, P. P. A., F. M. K. Kurita, and V. Tamaki. 2017. In vitro propagation of Ananas comosus var. ananassoides (Baker) Coppens & F. Leal (Bromeliaceae). Científica 45 (3):313–20. doi: 10.15361/1984-5529.2017v45n3p313-320.
  • Simões, C., N. Albarello, N. A. Castro, and E. Mansur. 2012. Production of anthocyanins by plant cell and tissue culture strategies. In Biotechnological production of plant secondary metabolites, ed. I. E. Orhan, 67–86. Famagusta, The Northern Cyprus, Turkey: Faculty of Pharmacy, Eastern Mediterranean University. doi: 10.2174/9781608051144112010100iv
  • Simões-Gurgel, C., L. S. Cordeiro, T. C. Castro, C. H. Callado, N. Albarello, and E. Mansur. 2011. Establishment of anthocyanin-producing cell suspension cultures of Cleome rosea Vahl ex DC. (Capparaceae). Plant Cell, Tissue and Organ Culture (PCTOC) 106 (3):537–45. doi: 10.1007/s11240-011-9945-3.
  • Soubeyrand, E., C. Basteau, G. Hilbert, C. van Leeuwen, S. Delrot, and E. Gomès. 2014. Nitrogen supply affects anthocyanin bio synthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103:38–49. doi: 10.1016/j.phytochem.2014.03.024.
  • Steyn, W. J., S. J. E. Wand, D. M. Holcroft, and G. Jacobs. 2002. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytologist 155 (3):349–61. doi: 10.1046/j.1469-8137.2002.00482.x.
  • Sugiharto, B., K. Miyata, H. Nakamoto, H. Sasakawa, and T. Sugiyama. 1990. Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Plant Physiology 92 (4):963–9. doi: 10.1104/pp.92.4.963.
  • Tanaka, Y., F. Brugliera, G. Kalc, M. Senior, B. Dyson, N. Nakamura, Y. Katsumoto, and S. Chandler. 2010. Flower color modification by engineering of the flavonoid biosynthetic pathway: Pratical perpectives. Bioscience Biotechnology Biochemistry 74 (9):1760–9. doi: 10.1271/bbb.100358.
  • Terashima, I., and J. R. Evans. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant and Cell Physiology 29:143–55. doi: 10.1093/oxfordjournals.pcp.a077461.
  • Treutter, D. 2010. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. International Journal of Molecular Sciences 11 (3):807–57. doi: 10.3390/ijms11030807.
  • Trojak, M., and E. Skowron. 2017. Role of anthocyanins in high-light stress response. World Scientific News 81:150–68.
  • Versieux, L. M., and M. G. L. Wanderley. 2015. Giant Bromeliads from Brazil. Offset Editora, 202.
  • Wang, H., W. Fan, L. Hong, J. Yang, J. Huang, and P. Zhang. 2013. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8 (11):e78484. doi: 10.1371/journal.pone.0078484.
  • Xu, Z., and S. J. Rothstein. 2018. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signaling & Behavior 13 (3):e1451708. doi: 10.1080/15592324.2018.1451708.
  • Yuan, Y., L. W. Chiu, and L. Li. 2009. Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230 (6):1141–53. doi: 10.1007/s00425-009-1013-4.
  • Zhang, C., H. Jia, W. Wu, X. Wang, J. Fang, and C. Wang. 2015. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress. Gene 574 (1):168–77. doi: 10.1016/j.gene.2015.08.003.
  • Zhang, Q., L. J. Su, J. W. Chen, X. Q. Zeng, B. Y. Sun, and C. L. Peng. 2012. The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. Biologia Plantarum 56 (1):97–104. doi: 10.1007/s10535-012-0022-5.
  • Zhou, L. L., M. Z. Shi, and D. Y. Xie. 2012. Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana. Planta 236 (3):825–37. doi: 10.1007/s00425-012-1674-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.