687
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Interaction effects of phosphorus (P) and zinc (Zn) on dry matter, concentration and uptake of P and Zn in chia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 755-764 | Received 16 Mar 2020, Accepted 21 Sep 2020, Published online: 10 Nov 2020

References

  • Amanullah, I., and X. Inamullah. 2016. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Science 23 (2):78–87. doi:10.1016/j.rsci.2015.09.006
  • Amanullah, S. A., A. Iqbal, and S. Fahad. 2016. Foliar phosphorus and zinc application improve growth and productivity of maize (Zea mays L.) under moisture stress conditions in semi-arid climates. Journal of Microbial Biochemical Technology 8:433–9. doi: 10.4172/1948-5948.1000321.
  • Aydemir, O. E., and F. Ozkutlu. 2018. Determination of zinc use efficiency for local corn (Zea mays L.) genotypes. University of Ordu, Science and Technology Journal 8 (2):143–52 (in Turkish with an abstract in English).
  • Barben, S. A., B. A. Nichols, B. G. Hopkins, V. D. Jolley, J. W. Ellsworth, and B. L. Webb. 2007. Phosphorus and zinc interactions in potato. Western Nutrient Management Conference, Utah, USA. pp. 1846–1851.
  • Bergmann, W. 1992. Nutritional disorders of plants development: Visual and analytical diagnosis. Stuttgart: Jena Gustav Fischer Verlag.
  • Bochicchio, R., R. Rossi, R. Labella, G. Bitella, M. Perniola, and M. Amato. 2015. Effect of sowing density and nitrogen top-dress fertilization on growth and yield of chia (Salvia hispanica L.) in a Mediterranean environment: First results. Italian Journal of Agronomy 10 (3):163–6. doi: 10.4081/ija.2015.640
  • Bukvić, G., M. Antunović, S. Popović, and M. Rastija. 2011. Effect of P and Zn fertilization on biomass yield and its uptake by maize lines (Zea mays L.). Plant, Soil and Environment 49 (11):505–10. doi:10.17221/4185-PSE.
  • Cakmak, I., and H. Marschner. 1987. Mechanism of phosphorus induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Physiologia Plantarum 70 (1):13–20. doi:10.1111/j.1399-3054.1987.tb08690.x
  • Gianquinto, G., A. Abu-Rayyan, L. Di Tola, D. Piccotino, and B. Pezzarossa. 2000. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments. Plant and Soil 220 (1/2):219–28. doi: 10.1023/A:1004705008101.
  • Gill, M. A., S. Kanwal, and T. Aziz. 2004. Differences in phosphorus-zinc interaction among sunflower (Helianthus annus L.), brassica (Brasica napus L.) and maize (Zea mays L.). Pakistan Journal of Agricultural Sciences 41:29–34.
  • Imran, M., A. Rehim, N. Sarwar, and S. Hussain. 2016a. Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. Journal of Plant Nutrition and Soil Science 179 (1):60–6.
  • Imran, M. A., S. Rehim, M. Hussain, H. Zafar Ul, and H. Rehman. 2016b. Efficiency of zinc and phosphorus applied to open-pollinated and hybrid cultivars of maize. International Journal of Agriculture and Biology 18 (06):1249–55.
  • Kacar, B. 1994. Chemical analysis of plant and soil III. Soil analysis. Ankara: University of Ankara, Faculty of Agriculture, Publication of Education, Research and Development Foundation (in Turkish).
  • Kacar, B., and A. Inal. 2010. Plant analysis. 2nd ed. Nobel Publication: Science and Biology Publication (in Turkish).
  • Khan, W., M. Faheem, M. Y. Khan, S. Hussain, M. A. Maqsood, and T. Aziz. 2015. Zinc requirement for optimum grain yield and zinc biofortification depends on phosphorus application to wheat cultivars. Romanian Agricultural Research 32:1–8.
  • Korkmaz, K., H. Ibrikci, E. Karnez, G. Buyuk, J. Ryan, A. C. Ulger, and H. Oguz. 2009. Phosphorus use efficiency of wheat genotypes grown in calcareous soils. Journal of Plant Nutrition 32 (12):2094–106. doi: 10.1080/01904160903308176
  • Kremper, R., G. Zsigrai, K. Ab, and J. Loch. 2016. Long-term effect of high phosphorus doses on zinc status of maize on a non-calcareous loamy soil. Plant, Soil and Environment 61 (1):1–5. doi: 10.17221/509/2014-PSE
  • Kumar, R., D. K. Rathore, M. Singh, P. Kumar, and A. Khippal. 2016. Effect of phosphorus and zinc nutrition on growth and yield of fodder cowpea. Legume Research 39 (2):262–7. doi: 10.18805/lr.v0iOF.9384.
  • Li, H. Y., Y. G. Zhu, S. E. Smith, and F. A. Smith. 2003. Phosphorus–zinc interactions in two barley cultivars differing in phosphorus and zinc efficiencies. Journal of Plant Nutrition 26 (5):1085–99. doi: 10.1081/PLN-120020077
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of American Journal 42 (3):421–8.
  • Mandal, B., and L. N. Mandal. 1990. Effect of phosphorus application on transformation of zinc fraction in soil and on the zinc nutrition of lowland rice. Plant and Soil 121 (1):115–23. doi:10.1007/BF00013104
  • Mohd Ali, N., S. K. Yeap, W. Y. Ho, B. K. Beh, S. W. Tan, and S. G. Tan. 2012. The promising future of chia, Salvia hispanica L. Journal of Biomedicine & Biotechnology 2012:171956–9. doi:10.1155/2012/171956
  • Mousavi, S. R. 2011. Zinc in crop production and interaction with phosphorus. Australian Journal of Basic and Applied Science 5:1503–9.
  • Munoz, L. A., A. Cobos, O. Diaz, and J. M. Aguilera. 2013. Chia seed (Salvia hispanica L.): an ancient grain and a new functional food. Food Reviews International 29 (4):394–408. doi: 10.1080/87559129.2013.818014
  • Murphy, J., and J. P. Riley. 1962. A modified method for determination of phosphate in natural waters. Analytica Chimica Acta 27:31–6.
  • Nezami, S., M. J. Malakouti, A. Bahrami Samani, and M. Ghannadi Maragheh. 2018. The role of organic acids on the uptake and relationship of phosphorus and zinc in corn (Zea mays L.) by application of 32P and 65Zn radioisotopes. Journal of Plant Nutrition 41 (7):846–55. doi: 10.1080/01904167.2018.1427267
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, vol. 939. Washington, D.C.: United States Department of Agriculture.
  • Ozkutlu, F., B. Torun, and I. Cakmak. 2006. Effect of zinc humate on growth of soybean and wheat in zinc‐deficient calcareous soil. Communications in Soil Science and Plant Analysis 37 (15–20):2769–78. doi: 10.1080/00103620600832167
  • Ova, E. A., U. B. Kutman, L. Ozturk, and I. Cakmak. 2015. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil 393 (1–2):147–62. doi:10.1007/s11104-015-2483-8
  • Salimpour, S. I., K. Khavazi, H. Nadian, H. Besharati, and M. Miransari. 2010. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science 4 (5):330–4.
  • Shah, Z., and S. K. Khalil. 2016. Phosphorus and zinc interaction influence leaf area index in fine vs. coarse rice (Oryza sativa L) genotypes in Northwest Pakistan. Journal of Plant Stress Physiology 2:1–8. doi:10.19071/jpsp.2016.v2.3025
  • Soltangheisi, A., C. F. Ishak, H. M. Musa, H. Zakikhani, and Z. A. Rahman. 2013. Phosphorus and zinc uptake and their interaction effect on dry matter and chlorophyll content of sweet corn (Zea mays var). Journal of Agronomy 12 (4):187–92. doi:10.3923/ja.2013.187.192
  • Soltangheisi, A., Z. A. Rahman, C. F. Ishak, H. M. Musa, and H. Zakikhani. 2014. Effect of zinc and phosphorus supply on the activity of carbonic anhydrase and the ultrastructure of chloroplast in sweet corn (Zea mays var. saccharata). Asian Journal of Plant Sciences 13 (2):51–8. doi: 10.3923/ajps.2014.51.58.
  • Souza, R. S., and L. H. G. Chaves. 2017. Initial growth of chia (Salvia hispanica L.) submitted to nitrogen, phosphorus and potassium fertilization. Australian Journal of Crop Science 11 (05):610–5. doi: 10.21475/ajcs.17.11.05, p.442
  • Vafaei, G., and A. Sarraf. 2014. Effect of phosphorus and zinc fertilizer application to increasing the quality of nourishment in winter wheat. International Journal of Biosciences 5 (4):82–7. doi: 10.12692/ijb/5.4.82-87.
  • Zhu, Y. G., S. E. Smith, and F. A. Smith. 2001. Zinc (Zn)-phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Annals of Botany 88 (5):941–5. doi:10.1081/PLN-120020077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.