253
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Elucidating the action mechanisms of silicon in the mitigation of phosphorus deficiency and enhancement of its response in sorghum plants

ORCID Icon & ORCID Icon
Pages 2572-2582 | Received 05 Jun 2020, Accepted 21 Mar 2021, Published online: 03 May 2021

References

  • Bajji, M., J. Kinet, and S. Lutts. (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation 36( 1): 61–70. doi: 10.1023/A:1014732714549.
  • Bargaz, A., M. Faghire, M. Farissi, J. Drevon, and C. Ghoulam. (2013) Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiologiae Plantarum, 35( 5): 1633–1644. doi: 10.1007/s11738-012-1206-5.
  • Bataglia, O. C., A. M. C Furlani, J. P. F. Teixeira, R. R. Furlani, and J. R. Gallo. (1983). Métodos de análise química de plantas. Campinas, Brasil.
  • Berger, S., A. K. Sinha, and T. Roitsch. (2007) Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany 58: 4019–4026. doi: 10.1093/jxb/erm298.
  • Cao, B., Q. Ma, Q. Zhao, L. Wang, and K. Xu. (2015) Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Scientia Horticulturae 194: 53–62. doi: 10.1016/j.scienta.2015.07.037.
  • Dionisio-Sese, M. L., and S. Tobita. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135( 1): 1–9. doi: 10.1016/S0168-9452(98)00025-9.
  • Fu, Y. Q., X. J. Yang, and H. Shen. (2014) The physiological mechanism of enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by phosphorus deficiency. Acta Physiologiae Plantarum 36( 1): 179–190. doi: 10.1007/s11738-013-1398-3.
  • Hoagland , D. R. e D. I. Arnon. (1950) O método de cultura de água para o cultivo de plantas sem solo. Circular. Estação Experimental de Agricultura da Califórnia 347: 1–32.
  • Kim, Y., A. L. Khan, M. Waqas, and I. J. Lee. (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Frontiers in Plant Science 8: 510. doi: 10.3389/fpls.2017.00510.
  • Korndörfer, G. H., H. S. Pereira, and A. Nola. (2004) Análise de silício: Solo, planta e fertilizante, 34. (Boletim técnico v.2). Uberlândia, Brazil: UFU.
  • Kostic, L., N. Nikolic, D. Bosnic, J. Samardzic, and M. Nikolic. (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant and Soil 419( 1–2): 447–455. doi: 10.1007/s11104-017-3364-0.
  • Kooten, O., and J. F. H. Snel. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25( 3): 147–150. doi: 10.1007/BF00033156.
  • Liang, Y., W. Zhang, Q. Chen, Y. Liu, and R. Ding. (2006) Effect of exogenous silicon (Si) onH+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany 57( 3): 212–219. doi: 10.1016/j.envexpbot.2005.05.012.
  • Ma, D., J. Zhang, J. Hou, Y. Li, X. Huang, C. Wang, H. Lu, Y. Zhu, and T. Guo. (2018) Evaluation of yield, processing quality, and nutritional quality in different-colored wheat grains under nitrogen and phosphorus fertilizer application. Crop Science 58( 1): 402–415. doi: 10.2135/cropsci2017.03.0152.
  • Ma, J. F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. (2006) A silicon transporter in rice. Nature 440:688–691. doi: 10.1038/nature04590..
  • Maiti, R. K. (1996) Sorghum science. Lebanon: Science Publishers.
  • Mehrabanjoubani, P., A. Abdolzadeh, H. R. Sadeghipour, and M. Aghdasi. (2015) Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere 25( 2): 192–201. doi: 10.1016/S1002-0160(15)60004-2.
  • Mendonça , A. O. , L. C. Tavares , A. P. Brunes , D. EU. R. Monzón e F. A. Villela. (2013) Acúmulo de silício e compostos fenólicos na parte aérea de plantas de trigo após a adubação silicatada. Bioscience Journal 29:1154–1162.
  • Sarker, B. C., and J. L. Karmoker. (1970) Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris Medik.). Bangladesh Journal of Botany 40( 1): 23–27. doi: 10.3329/bjb.v40i1.7992.
  • Singh, S. K., and V. R. Reddy. (2016) Methods of mesophyll conductance estimation: Its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2. Physiologia Plantarum 157: 234–254. doi: 10.1111/ppl.12415.
  • Singleton, V. L., and J. A. J. R. Rossi. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagens. American Journal of Enology and Viticulture 16: 144–158.
  • Swiader, J. M., Y. Chyan, and F. G. Freiji. 1994. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids 1. Journal of Plant Nutrition 17 (10):1687–99. doi:10.1080/01904169409364840.
  • Tewari, R. K., P. Kumar, and P. N. Sharma. (2007) Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. Journal of Integrative Plant Biology 49( 3): 313–322. doi: 10.1111/j.1744-7909.2007.00358.x.
  • Vasanthi, N., L. M. Saleena, and S. Raj. (2014) Anthoni. Silicon in crop production and crop protection -A review. Agricultural Reviews 35( 1): 14–20. doi: 10.5958/j.0976-0741.35.1.002.
  • Vega, I., M. Nikolic, S. Pontigo, K. Godoy, M. L. L. Mora, and P. Cartes. (2019) Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agronomy 9( 7): 388–402. doi: 10.3390/agronomy9070388.
  • Xu, H. X., X. Y. Weng, and Y. Yang. (2007) Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russian Journal of Plant Physiology 54( 6): 741–748. doi: 10.1134/S1021443707060040.
  • Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis Sativus L.) Plant Science 167( 3): 527–533. doi: 10.1016/j.plantsci.2004.04.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.