579
Views
6
CrossRef citations to date
0
Altmetric
Review

Physiological effects of salinity on nitrogen fixation in legumes – a review

&
Pages 2653-2662 | Received 14 Aug 2020, Accepted 08 Mar 2021, Published online: 05 May 2021

References

  • Abdel Latef, A. A., and H. Chaoxing. 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation 33 (3):644–53. doi: 10.1007/s00344-014-9414-4.
  • Azizpour, K., M. R. Shakiba, N. A. K. K. Sima, H. Alyari, M. Mogaddam, E. Esfandiari, and M. Pessarakli. 2010. Physiological response of spring durum wheat genotypes to salinity. Journal of Plant Nutrition 33 (6):859–73. doi: 10.1080/01904161003654097.
  • Bellabarba, A., C. Fagorzi, G. diCenzo, F. Pini, C. Viti, and A. Checcucci. 2019. Deciphering the symbiotic plant microbiome: Translating the most recent discoveries on Rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agronomy 9 (9):529. doi: 10.3390/agronomy9090529.
  • Bertrand, A., C. Dhont, M. Bipfubusa, F. P. Chalifour, P. Drouin, and C. J. Beauchamp. 2015. Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Applied Soil Ecology 87:108–17. doi: 10.1016/j.apsoil.2014.11.008.
  • Bolaños, L., A. El-Hamdaoui, and I. Bonilla. 2003. Recovery of development and functionality of nodules and plant growth in salt stressed Pisum sativum–Rhizobium leguminosarum symbiosis by boron and calcium. Journal of Plant Physiology 160 (12):1493–7. doi: 10.1078/0176-1617-01003.
  • Bordeleau, L. M., and D. Prevost. 1994. Nodulation and nitrogen fixation in extreme environments. Plant and Soil 161 (1):115–24. doi: 10.1007/BF02183092.
  • Borucki, W., and M. Sujkowska. 2008. The effects of sodium chloride-salinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants. Acta Physiologiae Plantarum 30 (3):293–301. doi: 10.1007/s11738-007-0120-8.
  • Bruning, B., and J. Rozema. 2013. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany 92:134–43. doi: 10.1016/j.envexpbot.2012.09.001.
  • Bruning, B., R. van Logtestijn, R. Broekman, A. de Vos, A. P. Gonzalez, and J. Rozema. 2015. Growth and nitrogen fixation of legumes at increased salinity under field conditions: Implications for the use of green manure in saline environments. AoB Plants 7:plv010. doi: 10.1093/aobpla/plv010.
  • Chávez-Avilés, M. N., C. L. Andrade-Pérez, and H. R. de la Cruz. 2013. PP2A mediates lateral root development under NaCl-induced osmotic stress throughout auxin redistribution in Arabidopsis thaliana. Plant and Soil 368 (1–2):591–602. doi: 10.1007/s11104-012-1540-9.
  • Clua, J., C. Roda, M. E. Zanetti, and F. A. Blanco. 2018. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9:125.
  • Complainville, A., L. Brocard, I. Roberts, E. Dax, N. Sever, N. Sauer, A. Kondorosi, S. Wolf, K. Oparka, and M. Crespi. 2003. Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicago species. The Plant Cell 15 (12):2778–91. doi: 10.1105/tpc.017020.
  • Crespi, M., and S. Galvez. 2000. Molecular mechanisms in root nodule development. Journal of Plant Growth Regulation 19 (2):155–66. doi: 10.1007/s003440000023.
  • Delgado, M. J., F. Ligero, and C. Lluch. 1994. Effects of salt stress on growth and nitrogen fixation by pea, fababean, common bean and soybean plants. Soil Biology and Biochemistry 26 (3):371–6. doi: 10.1016/0038-0717(94)90286-0.
  • Djanaguiraman, M., P. V. Prasad, D. L. Boyle, and W. T. Schapaugh. 2013. Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science 199 (3):171–7. doi: 10.1111/jac.12005.
  • Egamberdieva, D., S. Wirth, S. D. Bellingrath-Kimura, J. Mishra, and N. K. Arora. 2019. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology 10:2791. doi: 10.3389/fmicb.2019.02791.
  • Esseling, J. J., F. G. P. Lhuissier, and A. M. C. Emons. 2003. Nod factor-induced root hair curling: Continuous polar growth towards the point of nod factor application. Plant Physiology 132 (4):1982–8. doi: 10.1104/pp.103.021634.
  • Farooq, M., N. Gogoi, M. Hussain, S. Barthakur, S. Paul, N. Bharadwaj, H. M. Migdadi, S. S. Alghamdi, and K. H. M. Siddique. 2017. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry: PPB 118:199–217. doi: 10.1016/j.plaphy.2017.06.020.
  • Flowers, T. J., H. K. Galal, and L. Bromham. 2010. Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology 37 (7):604–12. doi: 10.1071/FP09269.
  • Hartwig, U. A., C. A. Maxwell, C. M. Joseph, and D. A. Phillips. 1990. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiology 92 (1):116–22. doi: 10.1104/pp.92.1.116.
  • Hishida, M., F. Ascencio Valle, H. Fujiyama, A. Orduño Cruz, T. Endo, and A. Larrinaga Mayoral. 2014. Antioxidant enzyme responses to salinity stress of Jatropha curcas and J. cinerea at seedling stage. Russian Journal of Plant Physiology 61 (1):53–62. doi: 10.1134/S1021443714010063.
  • Hoffman, B. M., D. Lukoyanov, Z. Y. Yang, D. R. Dean, and L. C. Seefeldt. 2014. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chemical Reviews 114 (8):4041–62. doi: 10.1021/cr400641x.
  • Kanawapee, N., J. Sanitchon, P. Srihaban, and P. Theerakulpisut. 2013. Physiological changes during development of rice (Oryza sativa L.) varieties differing in salt tolerance under saline field condition. Plant and Soil 370 (1–2):89–101. doi: 10.1007/s11104-013-1620-5.
  • Kao, W. Y., T. T. Tsai, H. C. Tsai, and C. N. Shih. 2006. Response of three Glycine species to salt stress. Environmental and Experimental Botany 56 (1):120–5. doi: 10.1016/j.envexpbot.2005.01.009.
  • Kirova, E., D. Nedeva, A. Nikolova, and G. Ignatov. 2005. Changes in the electrophoretic spectra of antioxidant enzymes in nitrate-fed and nitrogen-fixing soybean subjected to gradual water stress. Acta Agronomica Hungarica 52 (4):323–32. doi: 10.1556/AAgr.52.2004.4.1.
  • Kirova, E., N. Tzvetkova, I. Vaseva, and G. Ignatov. 2008. Photosynthetic responses of nitrate-fed and nitrogen-fixing soybean to progressive water stress. Journal of Plant Nutrition 31 (3):445–58. doi: 10.1080/01904160801894988.
  • Krapp, A. 2015. Nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Current Opinion in Plant Biology 25:115–22. doi: 10.1016/j.pbi.2015.05.010.
  • Krezhova, D., and E. Kirova. 2011. Hyperspectral remote sensing of the impact of environmental stresses on nitrogen fixing soybean plants (Glycine max L.). RAST 2011 - Proceedings of 5th International Conference on Recent Advances in Space Technologies 5966816, 172–7.
  • Liu, W., W. Kohlen, A. Lillo, R. Op den Camp, S. Ivanov, M. Hartog, E. Limpens, M. Jamil, C. Smaczniak, K. Kaufmann, et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. The Plant Cell 23 (10):3853–65. doi: 10.1105/tpc.111.089771.
  • Mahmud, K., S. Makaju, R. Ibrahim, and A. Missaoui. 2020. Current progress in nitrogen fixing plants and microbiome research. Plants 9 (1):97. doi: 10.3390/plants9010097.
  • Manchanda, G., and N. Garg. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum 30 (5):595–618. doi: 10.1007/s11738-008-0173-3.
  • Mansour, M. M. F. 2014. The plasma membrane transport systems and adaptation to salinity. Journal of Plant Physiology 171 (18):1787–800. doi: 10.1016/j.jplph.2014.08.016.
  • Miransari, M., and D. L. Smith. 2007. Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. Journal of Plant Nutrition 30 (12):1967–92. doi: 10.1080/01904160701700384.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59 (1):651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Navrot, N., N. Rouhier, E. Gelhaye, and J.-P. Jacquot. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum 129 (1):185–95. doi: 10.1111/j.1399-3054.2006.00777.x.
  • Partelli, F. L., P. Batista-Santos, P. Scotti-Campos, I. P. Pais, V. L. Quartin, H. D. Vieira, and J. C. Ramalho. 2011. Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea sp. Environmental and Experimental Botany 74:194–204. doi: 10.1016/j.envexpbot.2011.06.001.
  • Pla, C. L., and L. Cobos-Porras. 2015. Salinity: Physiological impacts on legume nitrogen fixation. In Legume nitrogen fixation in changing environment. Achievements and challenges, eds. S. Sulieman and L.-S.P. Tran, 133. Springer, Switzerland.
  • Predeepa, R. J., and D. A. Ravindran. 2010. Nodule formation, distribution and symbiotic efficacy of Vigna unguiculata L. under different soil salinity regimes. Emirates Journal of Food and Agriculture 22 (4):275–84. doi: 10.9755/ejfa.v22i4.4875.
  • Rao, D. L. N., K. E. Giller, A. R. Yeo, and T. J. Flowers. 2002. The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Annals of Botany 89 (5):563–70. doi: 10.1093/aob/mcf097.
  • Rasool, S., A. Ahmad, T. O. Siddiqi, and P. Ahmad. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum 35 (4):1039–50. doi: 10.1007/s11738-012-1142-4.
  • Roriz, M., S. M. P. Carvalho, P. M. L. Castro, and M. W. Vasconcelos. 2020. Legume biofortification and the role of plant growth-promoting bacteria in a sustainable agricultural era. Agronomy 10 (3):435. doi: 10.3390/agronomy10030435.
  • Rosenblueth, M., E. Ormeno-Orrillo, A. Lopez-Lopez, M. A. Rogel, B. J. Reyes-Hernandez, J. C. Martinez-Romero, P. M. Reddy, and E. Martinez-Romero. 2018. Nitrogen fixation in cereals. Frontiers in Microbiology 9:1794. doi: 10.3389/fmicb.2018.01794.
  • Santi, C., D. Bogusz, and C. Franche. 2013. Biological nitrogen fixation in non-legume plants. Annals of Botany 111 (5):743–67. doi: 10.1093/aob/mct048.
  • Saur, I. M., M. Oakes, M. A. Djordjevic, and N. Imin. 2011. Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytologist 190 (4):865–74. doi: 10.1111/j.1469-8137.2011.03738.x.
  • Scotti-Campos, P., N. Duro, M. da Costa, I. P. Pais, A. P. Rodrigues, P. Batista-Santos, J. N. Semedo, A. E. Leitao, F. H. C. Lidon, K. Pawlowski, et al. 2016. Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. Journal of Plant Physiology 196–197:60–9. doi: 10.1016/j.jplph.2016.03.012.
  • Singleton, P. W., S. A. El Swaify, and B. B. Bohlool. 1982. Effect of salinity on Rhizobium growth and survival: Isolated from sand growing legumes. Applied and Environmental Microbiology 44 (4):884–90. doi: 10.1128/AEM.44.4.884-890.1982.
  • Stagnari, F., A. Maggio, A. Galieni, and M. Pisante. 2017. Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture 4 1: 2. doi: 10.1186/s40538-016-0085-1.
  • Tejera, N. A., M. Soussi, and C. Lluch. 2006. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany 58 (1–3):17–24. doi: 10.1016/j.envexpbot.2005.06.007.
  • Toorchi, M., K. Yukawa, M. Nouri, and S. Komatsu. 2009. Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30 (12):2108–17. doi: 10.1016/j.peptides.2009.09.006.
  • Tu, J. C. 1981. Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Canadian Journal of Plant Science 61 (2):231–9. doi: 10.4141/cjps81-035.
  • Turner, N. C., T. D. Colmer, J. Quealy, R. Pushpavalli, L. Krishnamurthy, J. Kaur, G. Singh, K. H. M. Siddique, and V. Vadez. 2013. Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil 365 (1–2):347–61. doi: 10.1007/s11104-012-1387-0.
  • Ullah, A., M. Li, J. Noor, A. Tariq, Y. Liu, and L. Shi. 2019. Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ 7:e8191. doi: 10.7717/peerj.8191.
  • Velagaleti, R. R., S. Marsh, and D. Krames. 1990. Genotyping differences in growth and nitrogen fixation soybean [Glycine max (L.) Merr.] cultivars grown under salt stress. Tropical Agriculture 67:169–77.
  • Zahran, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63 (4):968–89. doi: 10.1128/MMBR.63.4.968-989.1999.
  • Zhang, J., S. Subramanian, G. Stacey, and O. Yu. 2009. Flavones and flavonols play distinct roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant Journal: For Cell and Molecular Biology 57 (1):171–83. doi: 10.1111/j.1365-313X.2008.03676.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.