164
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mycorrhization of Moringa oleifera improves growth and nutrient accumulation in leaves

&
Pages 1765-1773 | Received 13 May 2020, Accepted 17 Dec 2020, Published online: 17 Jan 2022

References

  • Barbosa, F. S., and L. Costa. 2018. Mycorrhization and phosphorus may be an alternative for increasing the production of metabolites in Myracrodruon urundeuva. Theoretical and Experimental Plant Physiology 30:297–302.
  • Beggi, F., F. Hamidou, C. T. Hash, and A. Buerkert. 2016. Effects of early mycorrhization and colonized root length on low-soil-phosphorus resistance of West African pearl millet. Journal of Plant Nutrition and Soil Science 179 (4):466–71. doi: https://doi.org/10.1002/jpln.201500501.
  • Bihuniak, J. D., R. R. Sullivan, C. A. Simpson, D. M. Caseria, T. B. Huedo-Medina, K. O. O'Brien, J. E. Kerstetter, and K. L. Insogna. 2014. Supplementing a low-protein diet with dibasic amino acids increases urinary calcium excretion in young women. The Journal of Nutrition 144 (3):282–8. doi: https://doi.org/10.3945/jn.113.185009.
  • Bouyoucos, G. J. 1936. Directions for making mechanical analysis of soils by the hydrometer method. Soil Science 42:225–30.
  • Bower, C. A., R. F. Reitemeier, and M. Fireman. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science 73:251–61.
  • Bower, C. A., and L. V. Wilcox. 1965. Methods of soil analysis Part 2. Madison: American Society of Agronomy.
  • Brundrett, M. C., Y. Piché, and R. L. Peterson. 1985. A developmental study of the early stages in vesicular-arbuscular mycorrhiza formation. Canadian Journal of Botany 63 (2):184–94. doi: https://doi.org/10.1139/b85-021.
  • Chapman, H. D., and P. F. Pratt. 1961. Methods of analysis for soil plants and water. Los Angeles: University of California, Division of Agricultural Sciences.
  • Chen, M., M. Arato, L. Borghi, E. Nouri, and D. Reinhardt. 2018. Beneficial services of arbuscular mycorrhizal fungi – From ecology to application. Frontiers in Plant Science 9:1270. doi: https://doi.org/10.3389/fpls.2018.01270.
  • Cosme, M., P. Franken, I. Mewis, S. Baldermann, and S. Wurst. 2014. Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24 (7):565–70. doi: https://doi.org/10.1007/s00572-014-0574-7.
  • Cruz, A. 2010. Efecto de los hongos micorrícicos sobre Tedera bajo condicoines de estrés hídrico. Final Degree Project. Tenerife, Spain: Higher Technical School of Agricultural Engineering, La Laguna College.
  • Giovannetti, M., and B. Mosse. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist 84 (3):489–500. doi: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x.
  • Hanlon, E. A. 1998. Elemental determination by atomic absorption spectrophotometry. In Yash P. Kalra (Ed.), Handbook of Reference Methods for Plant Analysis. Boca Raton: CRC Press.
  • Hewitt, E. J. 1966. Sand and water culture method used in the study of plant nutrition. Commonwealth Agricultural Bureaux. Technical Communication n° 22.
  • Ibrahim, M. 2019. Sunflower response to inoculation with single and mixed species of arbuscular mycorrhizal fungi: Agronomic characteristics. Acta Agriculturae Slovenica 113 (2):321. doi: https://doi.org/10.14720/aas.2019.113.2.13.
  • Kabir, A. H., T. Debnath, U. Das, S. A. Prity, A. Haque, M. M. Rahman, and M. D. Parvez. 2020. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiology and Biochemistry : PPB 150:254–62. doi: https://doi.org/10.1016/j.plaphy.2020.03.010.
  • Koch, A. M., P. M. Antunes, H. Maherali, M. M. Hart, and J. N. Klironomos. 2017. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. The New Phytologist 214 (3):1330–7. doi: https://doi.org/10.1111/nph.14465.
  • Koske, R. E., and J. M. Gemma. 1989. A modified procedure for sataining roots to detect VA mycorrhizas. Mycological Research 92 (4):486–505. doi: https://doi.org/10.1016/S0953-7562(89)80195-9.
  • Leghari, S. J., N. A. Wahocho, G. M. Laghari, A. H. Laghari, G. M. Bhabhan, and K. H. Talpur. 2016. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology 10 (9):209–18.
  • Leite, M. V., D. K. Alves, A. Ricarte, A. P. Oliveira, J. R. Guedes, A. Mayumi, and L. Costa. 2018. Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content. Fungal Biology 122 (9):918–27.
  • Leone, A., A. Spada, A. Battezzati, A. Schiraldi, J. Aristil, and S. Bertoli. 2015. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Molecular Sciences 16 (6):12791–835.
  • Li, W., M. Fang, Z. Shujuan, and Z. Xue. 2012. Effect of Glomus mosseae inoculation on growth and reproduction of rice. Information Technology and Agricultural Engineering 134:935–42.
  • MAPA. 1986. Métodos oficiales de análisis. Tomo III Plantas, productos orgánicos fertilizantes, suelos, aguas, productos fitosanitarios y fertilizantes inorgánicos. Ed. Secretaría General Técnica del Ministerio de Agricultura, Pesca y Alimentación, Spain.
  • Miller, R. O. 1998. High-temperature oxidation: Dry ashing. In Y. P. Kaira (Ed.), Handbook of reference methods for plant analysis. Boca Raton: CRC Press.
  • Nogueira, R. S., J. Alencar, V. Santos, D. S. Collares, R. A. Cordeiro, C. M. Souza, M. A. Neto, J. B. Feitosa, J. J. Costa, and M. F. Gadelha. 2017. Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine 10 (7):621–30. doi: https://doi.org/10.1016/j.apjtm.2017.07.002.
  • Oyeyinka, A. T., and S. A. Oyeyinka. 2018. Moringa oleifera as a food fortificant: Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences 17 (2):127–37. doi: https://doi.org/10.1016/j.jssas.2016.02.002.
  • Pandey, D., H. K. Kehri, I. Zoomi, O. Akhtar, and A. K. Singh. 2019. Mycorrhizal fungi: Biodiversity, ecological significance and industrial applications. In Yadav A.N., Mishra S., Singh S., Gupta A. (Eds.), Recent Advancement in White Biotechnology through Fungi, 181–99. Switzerland.
  • Pandey, A., K. Pradheep, R. Gupta, E. R. Nayar, and D. Bhandari. 2011. Drumstick tree” (Moringa oleífera Lam.): A multipurpose potential species in India. Genetic Resources and Crop Evolution 58 (3):453–60. doi: https://doi.org/10.1007/s10722-010-9629-6.
  • Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55 (1):158–61. doi: https://doi.org/10.1016/S0007-1536(70)80110-3.
  • Pilbeam, D. J. 2018. The utilization of nitrogen by plants: a whole plant perspective. In Christine H. Foyer, Hanma Zhang (Ed.), Annual plant reviews book series 42: Nitrogen metabolism in plant in the post-genomic era, 305–351. UK: Blackwell Publishing Ltd.
  • Rodríguez-Romero, A. S., R. Azcón, and M. C. Jaizme-Vega. 2011. Early mycorrhization of two tropical crops, papaya (Carica papaya L.) and pineapple (Anana comosus L. Merr.), reduces the necessity of P fertilization during the nursery stage. Fruits 66 (1):3–10. doi: https://doi.org/10.1051/fruits/2010036.
  • Sanchez-Ramírez, S., A. W. Wilson, and M. Ryberg. 2017. Overview of phylogenetic approaches to mycorrhizal biogeography, diversity and evolution. In Leho Tedersoo (Ed.), Biogeography of Mycorrhizal Symbiosis, 1–37. Springer International Publishing AG
  • Stadtlander, T., and K. Becker. 2017. Proximate compositions, amino and fatty acid profiles and element compositions of four different Moringa species. Journal of Agricultural Science 9 (7):46–57. doi: https://doi.org/10.5539/jas.v9n7p46.
  • Van Der Heijden, M. G., F. M. Martin, M. A. Selosse, and I. R. Sanders. 2015. Mycorrhizal ecology and evolution: The past, the present, and the future. The New Phytologist 205 (4):1406–23. doi: https://doi.org/10.1111/nph.13288.
  • Wang, B., and Y. L. Qiu. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16 (5):299–363. doi: https://doi.org/10.1007/s00572-005-0033-6.
  • Watanabe, F. S., and S. R. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal 29 (6):677–8. doi: https://doi.org/10.2136/sssaj1965.03615995002900060025x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.