324
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Expression of AMT1;1 and AMT2;1 is stimulated by mineral nitrogen and reproductive growth stage in barley under field conditions

ORCID Icon, , , , , & ORCID Icon show all
Pages 1246-1258 | Received 28 Jun 2021, Accepted 14 Mar 2022, Published online: 28 Apr 2022

References

  • Anbessa, Y., and P. Juskiw. 2012. Review: Strategies to increase nitrogen use efficiency of spring barley. Canadian Journal of Plant Science 92 (4):617–25. doi: 10.4141/cjps2011-207.
  • Bancal, M. O., R. Roche, and P. Bancal. 2008. Late foliar diseases in wheat crops decrease nitrogen yield through N uptake rather than through variations in N remobilization. Annals of Botany 102 (4):579–90. doi: 10.1093/aob/mcn124.
  • Barati, V., E. Bijanzadeh, Y. Emam, and M. Pessarakli. 2022. Nitrogen nutrition effects on triticale photosynthesis and assimilate translocation under late-season water stress conditions. Journal of Plant Nutrition 45 (3):439–56. doi: 10.1080/01904167.2021.1943677.
  • Bloom, A. J., S. S. Sukrapanna, and R. L. Warner. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiology 99 (4):1294–301. doi: 10.1104/pp.99.4.1294.
  • Britto, D. T., and H. J. Kronzucker. 2002. NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology 159 (6):567–84. doi: 10.1078/0176-1617-0774.
  • Bu, Y., T. Takano, and S. Liu. 2019. The role of ammonium transporter (AMT) against salt stress in plants. Plant Signaling & Behavior 14 (8):1625696. doi: 10.1080/15592324.2019.1625696.
  • Chen, X., H. Y. Chen, E. B. Searle, C. Chen, and P. B. Reich. 2021. Negative to positive shifts in diversity effects on soil nitrogen over time. Nature Sustainability 4 (3):225–32. doi: 10.1038/s41893-020-00641-y.
  • Dechorgnat, J., K. L. Francis, K. S. Dhugga, J. A. Rafalski, S. D. Tyerman, and B. N. Kaiser. 2019. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. BMC Plant Biology 19 (1):206. doi: 10.1186/s12870-019-1768-0.
  • Ellis, R. P., and B. Marshall. 1998. Growth, yield and grain quality of barley (Hordeum vulgare L) in response to nitrogen uptake - II. Plant development and rate of germination. Journal of Experimental Botany 49 (323):1021–9.
  • Esmaeilzadeh-Salestani, K., M. Bahram, R. Ghanbari, Moheb Seraj, D. Gohar, M. Tohidfar, V. Eremeev, L. Talgre, B. Khaleghdoust, S. M. Mirmajlessi, et al. 2021. Cropping systems with higher organic carbon promote soil microbial diversity. Agriculture, Ecosystems & Environment 319:107521. doi: 10.1016/j.agee.2021.107521.
  • Gazzarrini, S., L. Lejay, A. Gojon, O. Ninnemann, W. B. Frommer, and N. von Wiren. 1999. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. The Plant Cell 11 (5):937–48. doi: 10.1105/tpc.11.5.937.
  • Giehl, R. F. H., A. M. Laginha, F. Duan, D. Rentsch, L. Yuan, and N. von Wiren. 2017. A Critical Role of AMT2;1 in root-to-shoot translocation of ammonium in arabidopsis. Molecular Plant 10 (11):1449–60. doi: 10.1016/j.molp.2017.10.001.
  • Glass, A. D., D. T. Britto, B. N. Kaiser, J. R. Kinghorn, H. J. Kronzucker, A. Kumar, M. Okamoto, S. Rawat, M. Y. Siddiqi, S. E. Unkles, et al. 2002. The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany 53 (370):855–64. doi: 10.1093/jexbot/53.370.855.
  • Gooding, M. J., P. J. Gregory, K. E. Ford, and R. E. Ruske. 2007. Recovery of nitrogen from different sources following applications to winter wheat at and after anthesis. Field Crops Research 100 (2-3):143–54. doi: 10.1016/j.fcr.2006.06.002.
  • Guo, B., Y. Li, S. Wang, D. Li, C. Lv, and R. Xu. 2020. Characterization of the itrate Transporter gene family and functional identification of HvNRT2.1 in barley (Hordeum vulgare L.). PloS One 15 (4):e0232056. doi: 10.1371/journal.pone.0232056.
  • Hachiya, T., C. K. Watanabe, M. Fujimoto, T. Ishikawa, K. Takahara, M. Kawai-Yamada, H. Uchimiya, Y. Uesono, I. Terashima, and K. Noguchi. 2012. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant & Cell Physiology 53 (3):577–91. doi: 10.1093/pcp/pcs012.
  • Hammad, H. M., F. Abbas, A. Ahmad, H. F. Bakhat, W. Farhad, C. J. Wilkerson, S. Fahad, and G. Hoogenboom. 2020. Predicting kernel growth of maize under controlled water and nitrogen applications. International Journal of Plant Production 14 (4):609–20. doi: 10.1007/s42106-020-00110-8.
  • Hammad, H. M., W. Farhad, F. Abbas, S. Fahad, S. Saeed, W. Nasim, and H. F. Bakhat. 2017. Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environmental Science and Pollution Research International 24 (3):2549–57. doi: 10.1007/s11356-016-8031-0.
  • Han, M., J. Wong, T. Su, P. H. Beatty, and A. G. Good. 2016. Identification of nitrogen use efficiency genes in barley: Searching for QTLs controlling complex physiological traits. Frontiers in Plant Science 7:1587. doi: 10.3389/fpls.2016.01587.
  • Hao, D. L., J. Y. Zhou, S. Y. Yang, W. Qi, K. J. Yang, and Y. H. Su. 2020. Function and regulation of ammonium transporters in plants. International Journal of Molecular Sciences 21 (10):3557. doi: 10.3390/ijms21103557.
  • Jiang, J., J. Zhao, W. Duan, S. Tian, X. Wang, H. Zhuang, J. Fu, and Z. Kang. 2019. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC Plant Biology 19 (1):239. doi: 10.1186/s12870-019-1841-8.
  • Kanter, D. R., F. Bartolini, S. Kugelberg, A. Leip, O. Oenema, and A. Uwizeye. 2020. Nitrogen pollution policy beyond the farm. Nature Food 1 (1):27–32. doi: 10.1038/s43016-019-0001-5.
  • Karunarathne, S. D., Y. Han, X. Q. Zhang, and C. D. Li. 2020. Advances in understanding the molecular mechanisms and potential genetic improvement for nitrogen use efficiency in barley. Agronomy 10 (5):662. doi: 10.3390/agronomy10050662.
  • Khan, A., D. K. Y. Tan, M. Z. Afridi, H. Luo, S. A. Tung, M. Ajab, and S. Fahad. 2017a. Nitrogen fertility and abiotic stresses management in cotton crop: A review. Environmental Science and Pollution Research International 24 (17):14551–66. doi: 10.1007/s11356-017-8920-x.
  • Khan, A., D. Kean Yuen Tan, F. Munsif, M. Z. Afridi, F. Shah, F. Wei, S. Fahad, and R. Zhou. 2017b. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: A review. Environmental Science and Pollution Research International 24 (30):23471–87. doi: 10.1007/s11356-017-0131-y.
  • Koegel, S., N. Ait Lahmidi, C. Arnould, O. Chatagnier, F. Walder, K. Ineichen, T. Boller, D. Wipf, A. Wiemken, and P. Courty. 2013. The family of ammonium transporters (AMT) in Sorghum bicolor: Two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. The New Phytologist 198 (3):853–65. doi: 10.1111/nph.12199.
  • Kong, L. A., Y. Xie, L. Hu, B. Feng, and S. D. Li. 2016. Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Field Crops Research 196:134–44. doi: 10.1016/j.fcr.2016.06.015.
  • Kuht, J., V. Eremeev, L. Talgre, M. Alaru, E. Loit, E. Mäeorg, K. Esmaeilzadeh-Salestani, and A. Luik. 2019. Changes in the soil microbial hydrolytic activity and the content of organic carbon and total nitrogen by growing spring barley undersown with red clover in different farming systems. Agriculture 9 (7):146. doi: 10.3390/agriculture9070146.
  • Lima, J. E., S. Kojima, H. Takahashi, and N. von Wiren. 2010. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. The Plant Cell 22 (11):3621–33.doi: 10.1105/tpc.110.076216.
  • Liu, J. S., J. Fu, H. Tian, and Y. J. Gao. 2015. In-season expression of nitrate and ammonium transporter genes in roots of winter wheat (Triticum aestivum L.) genotypes with different nitrogen-uptake efficiencies. Crop and Pasture Science 66 (7):671–8. 10.1071/CP14264.
  • Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25 (4):402–8. doi: 10.1006/meth.2001.1262.
  • Loque, D., L. Yuan, S. Kojima, A. Gojon, J. Wirth, S. Gazzarrini, K. Ishiyama, H. Takahashi, and N. von Wiren. 2006. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant Journal: For Cell and Molecular Biology 48 (4):522–34. doi: 10.1111/j.1365-313X.2006.02887.x.
  • Maillard, A., S. Diquelou, V. Billard, P. Laine, M. Garnica, M. Prudent, J. M. Garcia-Mina, J. C. Yvin, and A. Ourry. 2015. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Frontiers in Plant Science 6:317. doi: 10.3389/fpls.2015.00317.
  • Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany 105 (7):1141–57. doi: 10.1093/aob/mcq028.
  • Masclaux-Daubresse, C., M. Reisdorf-Cren, and M. Orsel. 2008. Leaf nitrogen remobilisation for plant development and grain filling. Plant Biology (Stuttgart, Germany) 10 (Suppl 1):23–36.doi: 10.1111/j.1438-8677.2008.00097.x.
  • Neuhauser, B., M. Dynowski, and U. Ludewig. 2009. Channel-like NH3 flux by ammonium transporter AtAMT2. FEBS Letters 583 (17):2833–8. doi: 10.1016/j.febslet.2009.07.039.
  • Ninnemann, O., J. C. Jauniaux, and W. B. Frommer. 1994. Identification of a high affinity NH4+ transporter from plants. The EMBO Journal 13 (15):3464–71. doi: 10.1002/j.1460-2075.1994.tb06652.x.
  • Pan, J., Y. Zhu, D. Jiang, T. B. Dai, Y. X. Li, and W. X. Cao. 2006. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat. Field Crops Research 97 (2-3):322–36. doi: 10.1016/j.fcr.2005.11.006.
  • Patterson, K., T. Cakmak, A. Cooper, I. Lager, A. G. Rasmusson, and M. A. Escobar. 2010. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant, Cell & Environment 33 (9):1486–501. doi: 10.1111/j.1365-3040.2010.02158.x.
  • Saud, S., S. Fahad, C. Yajun, M. Z. Ihsan, H. M. Hammad, W. Nasim, M. Arif, and H. Alharby. 2017. Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. Frontiers in Plant Science 8:983. doi: 10.3389/fpls.2017.00983.
  • Sayed, S., and A. Jardine. 2015. Chitosan derivatives as important biorefinery intermediates. Quaternary tetraalkylammonium chitosan derivatives utilized in anion exchange chromatography for perchlorate removal. International Journal of Molecular Sciences 16 (5):9064–77. doi: 10.3390/ijms16059064.
  • Shelden, M. C., B. Dong, G. L. de Bruxelles, B. Trevaskis, J. Whelan, P. R. Ryan, S. M. Howitt, and M. K. Udvardi. 2001. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant and Soil 231 (1):151–60. doi: 10.1023/A:1010303813181.
  • Slimane, R., Ben, P. Bancal, and M.-O. Bancal. 2013. Down-regulation by stems and sheaths of grain filling with mobilized nitrogen in wheat. Field Crops Research 140:59–68. doi: 10.1016/j.fcr.2012.10.006.
  • Søgaard, R., M. Alsterfjord, N. MacAulay, and T. Zeuthen. 2009. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH. Pflugers Archiv : European Journal of Physiology 458 (4):733–43. doi: 10.1007/s00424-009-0665-z.
  • Sohlenkamp, C., M. Shelden, S. Howitt, and M. Udvardi. 2000. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Letters 467 (2-3):273–8.
  • Sohlenkamp, C., C. C. Wood, G. W. Roeb, and M. K. Udvardi. 2002. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiology 130 (4):1788–96. doi: 10.1104/pp.008599.
  • Su-Mei, L. I., L. I. Bao-Zhen, and S. Wei-Ming. 2012. Expression patterns of nine ammonium transporters in rice in response to N status. Pedosphere 22 (6):860–9.
  • Tanaka, R., and H. Nakano. 2019. Barley yield response to nitrogen application under different weather conditions. Scientific Reports 9 (1):1–12. doi: 10.1038/s41598-019-44876-y.
  • Taulemesse, F., J. L. Gouis, D. Gouache, Y. Gibon, and V. Allard. 2015. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1. PloS One 10 (3):e0120291. doi: 10.1371/journal.pone.0120291.
  • Tian, H., J. Fu, R. A. Drijber, and Y. J. Gao. 2015. Expression patterns of five genes involved in nitrogen metabolism in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies. Journal of Cereal Science 61:48–54. doi: 10.1016/j.jcs.2014.09.007.
  • Triboi, E., and A. M. Triboi-Blondel. 2002. Productivity and grain or seed composition: A new approach to an old problem - invited paper. European Journal of Agronomy 16 (3):163–86. doi: 10.1016/S1161-0301(01)00146-0.
  • Van Reeuwijk, L. P. 1995. Procedures for soil analysis. 5th ed. Vol. Technical Paper 9. Wageningen: ISRIC, FAO.
  • Von Wirén, N, and M. Merrick. 2004. Regulation and function of ammonium carriers in bacteria, fungi, and plants. In Molecular mechanisms controlling transmembrane transport, edited by E. Boles and R. Krämer, 95–120. Germany: Springer.
  • von Wittgenstein, N. J., C. H. Le, B. J. Hawkins, and J. Ehlting. 2014. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evolutionary Biology 14 (1):11. doi: 10.1186/1471-2148-14-11.
  • Wang, H., J. Ahan, Z. H. Wu, D. C. Shi, B. Liu, and C. W. Yang. 2012. Alteration of nitrogen metabolism in rice variety 'Nipponbare' induced by alkali stress. Plant and Soil 355 (1-2):131–47. doi: 10.1007/s11104-011-1086-2.
  • Wu, X., H. Yang, C. Qu, Z. Xu, W. Li, B. Hao, C. Yang, G. Sun, and G. Liu. 2015. Sequence and expression analysis of the AMT gene family in poplar. Frontiers in Plant Science 6:337. doi: 10.3389/fpls.2015.00337.
  • Xu, W., L. Jia, F. Baluška, G. Ding, W. Shi, N. Ye, and J. Zhang. 2012. PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. Journal of Experimental Botany 63 (17):6105–14. doi: 10.1093/jxb/ers259.
  • Yoneyama, T., F. Tanno, J. Tatsumi, and T. Mae. 2016. Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L.) as revealed through the production of 350 grains from a germinated seed over 150 days: A review and synthesis. Frontiers in Plant Science 7:1151. doi: 10.3389/fpls.2016.01151.
  • Yuan, L., D. Loque, S. Kojima, S. Rauch, K. Ishiyama, E. Inoue, H. Takahashi, and N. von Wiren. 2007. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19 (8):2636–52. doi: 10.1105/tpc.107.052134.
  • Zhao, B. T., X. F. Zhu, J. H. Jung, and Y. H. Xuan. 2016. Effect of brassinosteroids on ammonium uptake via regulation of ammonium transporter and N-metabolism genes in Arabidopsis. Biologia Plantarum 60 (3):563–71. doi: 10.1007/s10535-016-0627-1.
  • Zhou, B., M. D. Serret, J. B. Pie, S. S. Shah, and Z. Li. 2018. Relative contribution of nitrogen absorption, remobilization, and partitioning to the ear during grain filling in Chinese winter wheat. Frontiers in Plant Science 9:1351. doi: 10.3389/fpls.2018.01351.
  • Zhou, M. X. 2009. Barley production and consumption. In Genetics and improvement of barley malt quality, edited by G. Zhang and C. Li, 1–17. Berlin, Germany: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.