395
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Vermicompost and its role in alleviation of salt tress in plants – II. Impact of vermicompost on the physiological responses of salt-stressed plants

, , ORCID Icon &
Pages 1458-1478 | Received 28 Oct 2021, Accepted 01 Mar 2022, Published online: 13 May 2022

References

  • Adewole, M. B., and A. O. Ilesanmi. 2011. Effects of soil amendments on the nutritional quality of okra (Abelmoschus esculentus L.). Journal of Soil Science and Plant Nutrition 11:45–55.
  • Afkari, A. 2018. Investigation to the Vermicompost efficacy on the activity level of antioxidant enzymes and photosynthetic pigments of borage (Borago officinalis L.) under salinity stress conditions. Russian Agricultural Sciences 44 (4):310–6. doi: 10.3103/S106836741804002X.
  • Agastian, P., S. Kingsley, and M. Vivekanandan. 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38 (2):287–90. doi: 10.1023/A:1007266932623.
  • Akhkha, A., and T. Boutraa. 2010. Effect of salinity on chlorophyll fluorescence and chlorophyll content of the desert shrub Calotropis procera. International Journal Environmental Application and Science 5 (4):556–65.
  • Al Gehani, I. A., and T. M. Ismail. 2016. Effect of soil amendment on growth and physiological processes of rocket (Eruca sativa L.) grown under salinity conditions. Australian Journal of Basic and Applied Sciences 10:15–20.
  • Al Kharusi, L. A., R. Al Yahyai, and M. W. Yaish. 2019. Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of Date Palm. Agriculture 9 (1):8. doi: 10.3390/agriculture9010008.
  • Anjuma, N., I. Ahmada, I. Mohmooda, M. Pachecob, C. Armando, D. Pereira, S. Shahid Umar, A. Altaf Ahmadc, N. Khand, M. Muhammad Iqbalc, et al. 2012. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids. A review. Environmental and Experimental Botany 5:307–24.
  • Araji, S., T. A. Grammer, R. Gertzen, S. D. Anderson, M. Mikulic-Petkovsek, and R. Veberic. 2014. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regelation of cell death in walnut. Plant Physiology 64 (3):1191–2003.
  • Arefian, M., S. Vessal, S. Malekzadeh-Shafaroudi, K. H. Siddique, and A. Bagheri. 2019. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC Plant Biology 19 (1):300. doi: 10.1186/s12870-019-1793-z.
  • Aremu, A. O., N. A. Masondo, and J. V. Staden. 2014. Physiological and phytochemical responses of three nutrient-stressed bulbous plants subjected to vermicompost leachate treatment. Acta Physiologiae Plantarum 36 (3):721–31. doi: 10.1007/s11738-013-1450-3.
  • Arora, V. K., C. B. Singh, A. S. Sidhu, and S. S. Thind. 2011. Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agricultural Water Management 98 (4):563–8. doi: 10.1016/j.agwat.2010.10.004.
  • Ashraf, M., and H. Fatima. 1995. Responses of some salt tolerant and salt sensitive lines of safflower (Carthamustin ctorius L.). Acta Physiologia Plantarum 17:61–71.
  • Atiyeh, R. M., N. Arancon, C. A. Edwards, and J. D. Metzger. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology 75 (3):175–80. doi: 10.1016/S0960-8524(00)00064-X.
  • Atkinson, N. J., C. J. Lilley, and P. E. Urwin. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiology 162 (4):2028–41. doi: 10.1104/pp.113.222372.
  • Atlassi-Pak, V., and M. Meskarbashee. 2009. Effect of salt stress on chlorophyll content, fluorescence, Na+ and K+ ions content in rape plants (Brassica napus L.). Asian Journal Agriculure Research 3:28–37.
  • Azooz, M. M., M. A. Shadded, and A. A. Abdel-Latef. 2004. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian Journal Plant Physiology 9:1–8.
  • Badr, G. S. 2020. Combined effects of vermicompost and salinity on growth, biochemical, and molecular traits of Vicia faba., M. SC Thesis., Alexandria University, Faculty of Science, 193. p.
  • Baker, N. R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology 59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759.
  • Barkla, B. J., R. Vera-Estrella, and C. Raymond. 2016. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC Plant Biology 16 (1):110. doi: 10.1186/s12870-016-0797-1.
  • Barthet, M. M., and K. W. Hilu. 2007. Expression of matK: Functional and evolutionary implications. American Journal of Botany 94 (8):1402–12. doi: 10.3732/ajb.94.8.1402.
  • Beykkhormizi, A., P. Abrishamchi, A. Ganjeali, and M. Parsa. 2016. Effect of vermicompost on some morphological, physiological, and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. Journal of Plant Nutrition 39 (6):883–93. doi: 10.1080/01904167.2015.1109104.
  • Bian, S., and Y. Jiang. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae 120 (2):264–70. doi: 10.1016/j.scienta.2008.10.014.
  • Bongi, G., and F. Loreto. 1989. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. Plant Physiology 90 (4):1408–15. doi: 10.1104/pp.90.4.1408.
  • Coria-Cayupán, Y. S., M. A. I. Sánchez de Pinto, and M. Nazareno. 2009. Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. Journal of Agricultural and Food Chemistry 57 (21):10122–9. doi: 10.1021/jf903019d.
  • Delfine, S., A. Alvino, M. Villani, and F. Loreto. 1999. Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiology 119 (3):1101–6. doi: 10.1104/pp.119.3.1101.
  • Demidchik, V., D. Straltsova, S. S. Medvedev, G. A. Pozhvanov, A. Sokolik, and V. Yurin. 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment . Journal of Experimental Botany 65 (5):1259–70. doi: 10.1093/jxb/eru004.
  • Ding, Z. J., J. Y. Yan, C. X. Li, G. X. Li, Y. R. Wu, and S. J. Zheng. 2015. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant Journal: For Cell and Molecular Biology 84 (1):56–69. doi: 10.1111/tpj.12958.
  • Elshintinawy, F., and M. N. Elshourbagy. 2001. Alleviation of changes in protein metabolism in NaCl - stressed wheat seedlings by thiamine. Biologia Plantarum 44:541–5.
  • Flexas, J., and H. Medrano. 2002. Drought-inhibition of photosynthesis in C3-plants: Stomatal and non-stomatal limitation revisited. Annals of Botany 89 (2):183–9. doi: 10.1093/aob/mcf027.
  • Ford, K. L., A. Cassin, and A. Bacic. 2011. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontier in Plant Science 2:44. doi: 10.3389/fpls.2011.00044.PMID: 22639595.
  • Foyer, C. H., and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133 (1):21–5. doi: 10.1007/BF00386001.
  • Foyer, C. H., H. Lopez-Delgado, J. Dat, and I. Scott. 1997. Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum 100 (2):241–54. doi: 10.1111/j.1399-3054.1997.tb04780.x.
  • Foyer, C. H., and G. Noctor. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell 17 (7):1866–75.
  • Foyer, C. H., and G. Noctor. 2013. Redox signaling in plants. Antioxidants & Redox Signaling 18 (16):2087–90. doi: 10.1089/ars.2013.5278.
  • Foyer, C. H., F. L. Theodoulou, and S. Delrot. 2001. The functions of inter and intracellular glutathione transport systems in plants. Trends in Plant Science 6 (10):486–92. doi: 10.1016/s1360-1385(01)02086-6.
  • Gadallah, M. 1999. Effects of proline and glycine betaine on Vicia faba responses to salt stress. Biologia Plantarum 42 (2):249–57. doi: 10.1023/A:1002164719609.
  • García, A. C., L. A. Santos, F. G. Izquierdo, M. V. L. Sperandio, R. N. Castro, and R. L. L. Berbara. 2012. Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering 47:203–8. doi: 10.1016/j.ecoleng.2012.06.011.
  • Glinka, Z., and L. Reinhold. 1971. Abscisic acid raises the permeability of plant cells to water. Plant Physiology 48 (1):103–5. doi: 10.1104/pp.48.1.103.
  • Grace, S. C. 2006. Phenolics as antioxidants. In Antioxidants and reactive oxygen species in plants, ed. N. Smirnoff, 141–68. Oxford: Blackwell Publishing.
  • Guerfel, M., O. Baccouri, D. Boujnah, W. Cha, and M. Zarrouk. 2008. Impacts of water stress on gas exchange, water elations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae 1:1–7.
  • Hasanuzzaman, M., K. Nahar, T. Taufika Islam Anee, and M. Fujita. 2017. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology Molecular Biology in Plants 2:249–68.
  • Hniličkova, H., F. Hnilička, M. Orsak, and V. Hejnak. 2019. Effect of salt stress on growth, electrolyte leakage, Na+ and K content in selected plant species. Plant, Soil and Environment 65 (2):90–6. doi: 10.17221/620/2018-PSE.
  • Hong, Z., K. Lakkineni, Z. Zhang, and D. Verma. 2000. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122 (4):1129–35. doi: 10.1104/pp.122.4.1129.
  • Hosseinzadeh, S. R., H. Amiri, and A. Ismaili. 2016. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 54 (1):87–92. doi: 10.1007/s11099-015-0162-x.
  • Hosseinzadeh, S. R., H. Amiri, A. Ismaili, and C. A. A. S. Ahmad. 2018. Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture 17 (11):2426–60457. doi: 10.1016/S2095-3119(17)61874-4.
  • Huang, H., F. Ullah, D.-X. Zhou, M. Yi, and Y. Zhao. 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10:800. doi: 10.3389/fpls.2019.00800.
  • Hurkman, W., H. Tao, and C. Tanaka. 1991. Germin-like polypeptides increase in barley roots during salt stress. Plant Physiology 97 (1):366–71. doi: 10.1104/pp.97.1.366.
  • Jaleel, A. C., B. Sankar, R. Sridharan, and R. Panneerselvam. 2008. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in catharanthus roseus. Turkish Journal of Biology 32:79–83.
  • Jiang, Y., B. Yang, N. S. Harris, and M. K. Deyholos. 2007. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58 (13):3591–607. doi: 10.1093/jxb/erm207.
  • Jiménez, A., J. A. Hernández, L. A. del Río, and F. Sevilla. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea (Pisum sativum L.) leaves. Plant Physiology 114 (1):275–84. doi: 10.1104/pp.114.1.275.
  • Kafi, M. 2009. The effects of salinity and light on photosynthesis, respiration and chlorophyll fluorescence in salt-tolerant and salt-sensitive wheat (Triticum aestivum L.) cultivars. Journal of Agriculture Science & Technology 11:535–47.
  • Kaya, C., B. E. Ak, D. Higgs, and B. Murillo-Amador. 2002. Influence of foliar-applied calcium nitrate on strawberry plants grown under salt-stressed conditions. Australian Journal of Experimental Agriculture 42 (5):631–6. doi: 10.1071/EA01110.
  • Kaymakanova, M., and N. Stoeva. 2008. Physiologycal reaction of bean plant (Phaseolus Vulgaris L.) to salt stress. Genetics and Applied Plant Physiology 34:177–88.
  • Kenyangi, A., and W. Blok. 2013. Vermicompost as a component in potting mixes for growth promotion in ornamental plants. Rwanda Journal 28 (1): 1–11. doi: 10.4314/rj.v28i0.4.
  • Khan, M. H., and S. K. Panda. 2007. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum 30 (1):81–9. doi: 10.1007/s11738-007-0093-7.
  • Kim, T. H., M. Bohmer, H. Hu, N. Nishimura, and J. I. Schroeder. 2010. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca 2+ signaling. Annual Review of Plant Biology 61 (1):561–91. doi: 10.1146/annurev-arplant-042809-112226.
  • Kiran, S. 2019. Effects of vermicompost on some morphological, physiological and biochemical parameters of Lettuce (Lactuca sativa var. crispa) under drought stress. National Botany, Horticulture, & Agrobacterium 47 (2):352–8.
  • Krol, A., R. Amarowicz, and S. Weidner. 2014. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum 36 (6):1491–9. doi: 10.1007/s11738-014-1526-8.
  • Kulikova, N. A. E. V. Stepanova, and O. V. Koroleva. 2005. Mitigating activity of humic substances: Direct influence on biota. In Use of humic substances to remediate polluted environments: From theory to practice. NATO Science Series. IV: Earth and Environmental Sciences, eds. I. V. Perminova, K. Hatfield, and N. Hertkorn, vol. 52, 285–310. Dordrecht: Springer.
  • Kumar, S., M. Reddy, and C. Sudhakar. 2003. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Science 165 (6):1245–51. doi: 10.1016/S0168-9452(03)00332-7.
  • Lamma, O. A., and M. A. Moftah. 2016. Effect of vermicompost on antioxidant levels in Andrographis paniculata. International Journal of Applied and Pure Science and Agriculture 2 (3): 1–6. E- ISSN: 2394-5532, P-ISSN: 2394-823x.
  • Lattanzio, V. 2014. Phenolic compounds: Introduction. Berlin Heidelberg, Germany: Springer-Verlag.
  • Lavenus, J., T. Goh, I. Roberts, S. Guyomarc'h, M. Lucas, I. De Smet, H. Fukaki, T. Beeckman, M. Bennett, and L. Laplaze. 2013. Lateral root development in Arabidopsis: Fifty shades of auxin. Trends in Plant Science 18 (8):450–8. doi: 10.1016/j.tplants.2013.04.006.
  • Lehtimäki, N., M. M. Koskela, and P. Mulo. 2015. Posttranslational modifications of chloroplast proteins: An emerging Field. Plant Physiology 168 (3):768–75. doi: 10.1104/pp.15.00117.
  • Levit, J. 1980. Responses of plants to environmental stresses, Vol. II. New York: Academic Press.
  • Lokhande, V. H., T. D. Nikam, V. Y. Patade, M. L. Ahire, and P. Suprasanna. 2011. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Culture (PCTOC) 104 (1):41–9. doi: 10.1007/s11240-010-9802-9.
  • Lu, C., M. X. Chen, R. Liu, L. Zhang, X. Hou, S. Liu, X. Ding, Y. Jiang, J. Xu, J. Zhang, et al. 2019. Abscisic acid regulates auxin distribution to mediate maize lateral root development under salt stress. Frontiers in Plant Science 10:716. DOI = doi: 10.3389/fpls.2019.00716.
  • Luján-Hidalgo, M. C., L. E. Pérez-Gómez, M. Abud-Archila, R. Meza-Gordillo, V. M. Ruiz-Valdiviezo, L. Dendooven, and F. A. Gutiérrez-Miceli. 2015. Growth, phenolic content and antioxidant activity in chincuya (Annona purpurea moc & sesse ex dunal) cultivated with vermicompost and phosphate rock. Compost Science & Utilization 23 (4):276–83. doi: 10.1080/1065657X.2015.1046617.
  • Lu, Q., C. Lu, J. Zhang, and T. Kuang. 2002. Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. Journal of Plant Physiology 159 (11):1173–8. doi: 10.1078/0176-1617-00727.
  • Makkar, C., J. Singh, C. Parkash, S. Singh, A. P. Vig, and S. S. Dhaliwal. 2022. Vermicompost acts as bio-modulator for plants under stress and non-stress conditions. Environment Development and Sustainability, 1-52. doi: 10.1007/s10668-022-02132-w.
  • Mansour, M. M. F., and K. Salama. 2004. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany 52 (2):113–22. doi: 10.1016/j.envexpbot.2004.01.009.
  • Mattioni, C., N. G. Lacerenza, A. Troccoli, A. M. Leonardis, and N. Fonzo. 1997. Water and salt stress- induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum 101 (4):787–92. doi: 10.1111/j.1399-3054.1997.tb01064.x.
  • Maxwell, K., and G. N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51 (345):659–68. doi: 10.1093/jxb/51.345.659.
  • Mininno, M., S. Brugière, V. Pautre, A. Gilgen, S. Ma, M. Ferro, M. Tardif, C. Alban, and S. Ravanel. 2012. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. The Journal of Biological Chemistry 287 (25):21034–44. doi: 10.1074/jbc.M112.359976.
  • Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9 (10):490–8. doi: 10.1016/j.tplants.2004.08.009.
  • Mittova, V., F. Theodoulou, G. Kiddle, L. Gomez, M. Volokita, M. Tal, C. Foyer, and M. Guy. 2003. Coordinate induction of glutathione biosynthesis and glutathione metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Letters 554 (3):417–21. doi: 10.1016/S0014-5793(03)01214-6.
  • Mizuno, M., M. Kamei, and H. Tsuchida. 1998. Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. Biochemistry & Molecular Biology Internship 44 (4):717–26.
  • Moussa, H., and M. Hassan. 2016. Growth enhancers to mitigate salinity stress in Vicia faba. International Journal of Vegetable Science 22 (3): 243–250.
  • Mukta, S., M. M. Rahman, and M. G. Mortuza. 2016. Yield and nutrient content of tomato as influenced by the application of vermicompost and chemical fertilizers. Journal of Environmental Science and Natural Resources 8 (2):115–22. doi: 10.3329/jesnr.v8i2.26877.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Murphy, L., S. Kinsey, and M. Durako. 2003. Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany 75 (4):293–309. doi: 10.1016/S0304-3770(02)00206-1.
  • Nayyar, H., and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany 58 (1–3):106–13. doi: 10.1016/j.envexpbot.2005.06.021.
  • Noctor, G., A. Mhamdi, and C. H. Foyer. 2014. The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiology 164 (4):1636–48. doi: 10.1104/pp.113.233478.
  • Osman, A., and M. Rady. 2012. Ameliorative effects of sulphur and humic acid on the growth, antioxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. The Journal of Horticultural Science and Biotechnology 87 (6):626–32. doi: 10.1080/14620316.2012.11512922.
  • Oukarroum, A., F. Bussotti, V. Goltsev, and H. M. Kalaji. 2015. Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environmental and Experimental Botany 109:80–8. doi: 10.1016/j.envexpbot.2014.08.005.
  • Pacheco, C. M., M. C. Pestana-Calsa, F. C. Gozzo, R. J. Mansur Custodio Nogueira, M. Menossi, and T. Calsa Junior. 2013. Differentially delayed root proteome responses to salt stress in sugar cane varieties. Journal of Proteome Research 12 (12):5681–95. doi: 10.1021/pr400654a.
  • Parida, A., and A. B. Das. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60 (3):324–49. doi: 10.1016/j.ecoenv.2004.06.010.
  • Parvaiz, A., and S. Satyawati. 2008. Salt stress and phytobiochemical responses of plants-a review. Plant, Soil and Environment 54 (3):89–96. doi: 10.17221/2774-PSE.
  • Perez-Clemente, R. M., V. Vives, S. I. Zandalinas, M. F. Lopez-Climent, V. Munoz, and A. Cadenas. 2013. Biotechnological approaches to study plant responses to stress. Biomedical Research International 2013:1–10. doi: 10.1155/2013/654120.
  • Petridis, A., I. Therios, G. Samouris, and C. Tananaki. 2012. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany 79:37–43. doi: 10.1016/j.envexpbot.2012.01.007.
  • Plumb, W., A. J. Townsend, B. Rasool, S. Alomrani, N. Razak, B. Karpinska, A. V. Ruban, and C. H. Foyer. 2018. Ascorbate-mediated regulation of growth, photoprotection, and photoinhibition in Arabidopsis thaliana. Journal of Experimental Botany 69 (11):2823–35. doi: 10.1093/jxb/ery170.
  • Posch, S., and L. T. Bennett. 2009. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina Luehmannii. Plant Biology 11:83–93. doi: 10.1111/j.1438-8677.2009.00245.x.
  • Pustovoitova, T. N., N. E. Zhdanova, and V. N. Zholkevich. 2004. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russian Journal of Plant Physiology 51 (4):513–7. doi: 10.1023/B:RUPP.0000035745.82509.bc.
  • Qiu, Z. B., X. Liu, X. J. Tian, and M. Yue. 2008. Effects of CO2 laser pretreatment on drought stress resistance in wheat. Journal of Photochemistry and Photobiology. B, Biology 90 (1):17–25. doi: 10.1016/j.jphotobiol.2007.09.014.
  • Rady, M., W. Semida, K. Hemida, and M. Abdelhamid. 2016. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. International Journal of Recycling of Organic Waste in Agriculture 5 (4):311–21. doi: 10.1007/s40093-016-0141-7.
  • Rahbarian, R., R. Khavari-Nejad, A. Ganjeali, A. Bagheri, F. Najafi, and M. Roshanfekr. 2012. Use of biochemical indices and antioxidant enzymes as a screening technique for drought tolerance in Chickpea genotypes (Cicer arietinum L.). African Journal of Agricultural Research 7:5372–80.
  • Reddy, T. Y., V. R. Reddy, and V. Anbumozhi. 2003. Physiological responses of groundnut (Arachis hypogea L.) to water stress and its amelioration, a critical review. Plant Growth Regulation 41 (1):75–88. doi: 10.1023/A:1027353430164.
  • Shao, H. B., Z. S. Liang, M. A. Shao, and Q. Sun. 2005. Dynamic changes of antioxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids and Surfaces. B, Biointerfaces 42 (3–4):187–95. doi: 10.1016/j.colsurfb.2005.02.007.
  • Shu, D., L. Wang, B. Duan, Y. Deng, and Q. Meng. 2011. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiology and Biochemistry: PPB 49 (10):1228–37. doi: 10.1016/j.plaphy.2011.04.005.
  • Sofo, A., N. Cicco, M. Paraggio, and A. Antonio Scopa. 2010. Ascorbate-glutathione pathway and stress tolerance in plants. Dordrecht, Heidelberg, The Netherlands: Springer Science + Business Media B.V. doi: 10.1007/978-90-481-9404-9_5.
  • Spreitzer, R. J., and M. E. Salvucci. 2002. RUBISCO: Structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology 53:449–75. doi: 10.1146/annurev.arplant.53.100301.135233.
  • Suneetha, Ch. M. D., S. A. Khan, E. Muralinath, S. K. Jaffar, M. D. Ibrahim, and M. Guruprasad. 2011. Effect of vermicompost on the antioxidant levels of Coleus aromaticus. International Journal of Science Innovations and Discoveries 1 (3):422–7.
  • Suthar, S. 2009. Impact of vermicompost and composted farmyard manure on growth and yield of garlic (Allium stivum L.) field crop. International Journal of Plant Production 3 (1):1735–6814.
  • Taiz, L., and E. Zeiger. 2009. Plant physiology. 5th ed. Massachusetts: Sinauer Associates, Inc. Publishers.
  • Tang, X., X. Mu, H. Shao, H. Wang, and M. Brestic. 2015. Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology 35 (4):425–37. doi: 10.3109/07388551.2014.889080.
  • Thipyapong, P., J. Melkonian, D. W. Wolfe, and J. C. Steffens. 2004. Suppression of polyphenol oxidases increase stress tolerance in tomato. Plant Science 167 (4):693–703. doi: 10.1016/j.plantsci.2004.04.008.
  • Thomas, J. C., E. F. McElwain, and H. J. Bohnert. 1992. Convergent induction of osmotic stress-responses: Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiology 100 (1):416–23. doi: 10.1104/pp.100.1.416.
  • Torabi, M. 2014. Physiological and biochemical responses of plants to salt stress. The 1st International Conference on New Ideas in Agriculture Islamic Azad University Khorasgan Branch, Isfahan, Iran.
  • Trethewey, R. N., and A. M. Smith. 2000. Starch metabolism in leaves. In Advances in photosynthesis. Vol 9. Photosynthesis: Physiology and metabolism, ed. R. C. Lee good, T. D. Sharkey, S. von Caemmerer, 205–31. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  • Trievel, R. C., E. M. Flynn, R. L. Houtz, and J. H. Hurley. 2003. Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Nature Structural Biology 10 (7):545–52. doi: 10.1038/nsb946.
  • Vijayalakshmi, A., and R. Karthiyayini. 2018. Effect of vermicompost on biochemical content of two indian green leafy vegetables. International Journal of Pharmaceutical Sciences and Research 9 (10): 4446–4450.
  • Wang, S., S. Assmann, and N. Fedoroff. 2008. Characterization of the Arabidopsis heterotrimeric G protein. The Journal of Biological Chemistry 283 (20):13913–22. doi: 10.1074/jbc.M801376200.
  • Wang, Y., and N. Nii. 2000. Changes in chlorophyll, ribulosebiphosphate carboxylase oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. The Journal of Horticultural Science and Biotechnology 75 (6):623–7. doi: 10.1080/14620316.2000.11511297.
  • Wang, Y., M. Wisniewski, R. Meilan, S. L. Uratsu, M. Cui, A. Dandekar, and L. Fuchigami. 2007. Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. Journal of Applied Horticulture 9 (1):3–8. doi: 10.37855/jah.2007.v09i01.01.
  • Weidner, S., M. Karolak, M. Karamac’, A. Kosin’ska, and R. Amarowicz. 2011. Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera) under drought stress followed by regeneration. Acta Societatis Botanicorum Poloniae 78 (2):97–103. doi: 10.5586/asbp.2009.013.
  • Yamane, K., M. H. Rahman, M. Kawasaki, M. Taniguchi, and H. Miyake. 2004. Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultrastructure in rice leaf segments (Oryza sativa L.). Plant Proceeding, Science 7 (3):292–300. doi: 10.1626/pps.7.292.
  • Yin, C.-C., B. Ma, D. P. Collinge, B. J. Pogson, S.-J. He, Q. Xiong, K.-X. Duan, H. Chen, C. Yang, X. Lu, et al. 2015. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. The Plant Cell 27 (4):1061–81. doi: 10.1105/tpc.15.00080.
  • Zeeman, S. C., D. Thorneycroft, N. Schupp, A. Chapple, M. Weck, H. Dunstan, P. Haldimann, N. Bechtold, A. M. Smith, and S. M. Smith. 2004. Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology 135 (2):849–58. doi: 10.1104/pp.103.032631.
  • Zhao, G., B. Ma, and C. Ren. 2007. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Science 47 (1):123–31. doi: 10.2135/cropsci2006.06.0371.
  • Zhu, J., and F. C. Meinzer. 1999. Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Australian Journal of Plant Physiology 26:79–86.
  • Zlatev, Z. S., and I. T. Yordanov. 2004. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarestan Journal of Plant Physiology 30:3–18.
  • Zrig, A., T. Tounekti, A. M. Vadel, H. B. Mohamed, D. Valero, M. Serrano, C. Chtara, and H. Khemira. 2011. Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry: PPB 49 (11):1313–22. doi: 10.1016/j.plaphy.2011.08.009.
  • Zuhaili, Y., R. S. Sujatha, Z. I. Noor, and S. Jamilah. 2018. Vermicompost supplementation improves the stability of bioactive anthocyanin and phenolic compounds in Clinacanthus nutans lindau. Molecules 23:1345. doi: 10.3390/molecules23061345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.