221
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Potential of potent purple nonsulfur bacteria isolated from rice-shrimp systems to ameliorate rice (Oryza sativa L.) growth and yield in saline acid sulfate soil

, , , , , , , , , & show all
Pages 473-494 | Received 10 Aug 2021, Accepted 06 Jan 2022, Published online: 15 Jun 2022

References

  • Abrol, I. P., J. S. P. Yadav, and F. I. Massoud. 1988. Salt-affected soils and their management (FAO soils bulletin 39). Rome: Food & Agriculture Org.
  • Aguilar, M., J. L. Fernández-Ramírez, M. Aguilar-Blanes, and C. Ortiz-Romero. 2017. Rice sensitivity to saline irrigation in Southern Spain. Agricultural Water Management 188:21–8. doi: 10.1016/j.agwat.2017.03.027.
  • Attanandana, T., and S. Vacharotayan. 1986. Acid sulfate soils: Their characteristics, genesis, amelioration and utilization. Japanese Journal of Southeast Asian Studies 24 (2):155–80. http://hdl.handle.net/2433/56244.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1):205–7. doi: 10.1007/BF00018060.
  • Bloom, P. R., R. M. Weaver, and M. B. McBride. 1978. The spectrophotometric and fluorometric determination of Al with 8-hydroxyquinoline and butyl acetate. Soil Science Society of America Journal 42 (5):713–6. doi: 10.2136/sssaj1978.03615995004200050011x.
  • Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59:39–45. doi: 10.1097/00010694-194501000-00006.
  • Bremner, I. M. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science 55 (1):11–33. doi: 10.1017/S0021859600021572.
  • Burnham, B. F. 1970. δ-Aminolevulinic acid synthase (from Rhodopseudomonas sphaeroides). Methods in Enzymology 17:195–204.
  • Chumpol, S., D. Kantachote, T. Nitoda, and H. Kanzaki. 2017. The roles of probiotic purple nonsulfur bacteria to control water quality and prevent acute hepatopancreatic necrosis disease (AHPND) for enhancement growth with higher survival in white shrimp (Litopenaeus vannamei) during cultivation. Aquaculture 473:327–36. doi: 10.1016/j.aquaculture.2017.02.033.
  • Dinh, L. X., N. M. Quan, and P. A. Tien. 2016. Salt water intrusion in the Mekong delta: Cause, effect and solution to adapt. National Agency for Science and Technology Information of Vietnam, 50.
  • Eboigbodin, K. E., and C. A. Biggs. 2008. Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules 9 (2):686–95. doi: 10.1021/bm701043c.
  • El-Sayed, M., and W. M. Salem. 2015. Hydrochemical assessments of surface Nile water and ground water in an industry area–South West Cairo. Egyptian Journal of Petroleum 24 (3):277–88. doi: 10.1016/j.ejpe.2015.07.014.
  • Filho, G. F., N. da Silva Dias, S. R. P. Suddarth, J. F. Ferreira, R. G. Anderson, C. dos Santos Fernandes, R. Barbosa de Lira, M. F. Neto, and C. R. Cosme. 2020. Reclaiming tropical saline-sodic soils with gypsum and cow manure. Water 12 (1):57. doi: 10.3390/w12010057.
  • Fukuda, H., A. Casas, and A. Batlle. 2005. Aminolevulinic acid: From its unique biological function to its star role in photodynamic therapy. The International Journal of Biochemistry & Cell Biology 37 (2):272–6. doi: 10.1016/j.biocel.2004.04.018.
  • Gangwar, P. R. Singh, M. Trivedi, and R. K. Tiwari. 2020. Sodic soil: Management and reclamation strategies. In Environmental concerns and sustainable development, 175–90. Singapore: Springer. doi: 10.1007/978-981-13-6358-0_8.
  • Gharsallah, C., H. Fakhfakh, D. Grubb, and F. Gorsane. 2016. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8: Plw055. doi: 10.1093/aobpla/plw055.
  • Glickman, E., and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology 61 (2):793–6. doi: 10.1128/AEM.61.2.793-796.1995.
  • Grattan, S., L. Zeng, M. Shannon, and S. Roberts. 2002. Rice is more sensitive to salinity than previously thought. California Agriculture 56 (6):189–98. doi: 10.3733/ca.v056n06p189.
  • Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41 (2):95–8. doi: 10.14601/Phytopathol_Mediterr-14998u1.29.
  • Hayat, S., Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments: A review. Plant Signaling & Behavior 7 (11):1456–66. doi: 10.4161/psb.21949.
  • Horneck, D. A. D. M. Sullivan, J. S. Owen, and J. M. Hart. 2011. Soil test interpretation guide. Technical Report. Oregon State University. Extension Service. Report number: EC1478.
  • International Rice Research Institute (IRRI). 2014. Standard procedure for determining yield components at harvest. Accessed January 16, 2020.
  • Islam, M. R., T. Naznin, D. R. Gupta, M. A. Haque, M. Hasanuzzaman, and M. M. Rohman. 2020. Insight into 5-aminolevulinic acid-induced modulation of cellular antioxidant metabolism to confer salinity and drought tolerance in maize. Biocell 44 (4):713–30. doi: 10.32604/biocell.2020.011812.
  • Jackson, M. 1958. Soil chemical analysis. Englewood Cliffs, NJ: Prentice Hall, Inc.
  • Kantachote, D., T. Nunkaew, T. Kantha, and S. Chaiprapat. 2016. Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology 100:154–61. doi: 10.1016/j.apsoil.2015.12.015.
  • Kantha, T., D. Kantachote, and N. Klongdee. 2015. Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of Microbiology 65 (4):2109–18. doi: 10.1007/s13213-015-1049-6.
  • Khuong, N. Q., D. Kantachote, J. Onthong, and A. Sukhoom. 2017. The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al3+ and Fe2+ using biosorption for agricultural application. Biocatalysis and Agricultural Biotechnology 12:329–40. doi: 10.1016/j.bcab.2017.10.022.
  • Khuong, N. Q., D. Kantachote, J. Onthong, L. N. T. Xuan, and A. Sukhoom. 2018. Enhancement of rice growth and yield in actual acid sulfate soils by potent acid-resistant Rhodopseudomonas palustris strains for producing safe rice. Plant and Soil 429 (1-2):483–501. doi: 10.1007/s11104-018-3705-7.
  • Khuong, N. Q., D. Kantachote, L. V. Thuc, P. Nookongbut, L. N. T. Xuan, T. C. Nhan, N. T. T. Xuan, and M. Tantirungkij. 2020b. Potential of Mn2+-resistant purple nonsulfur bacteria isolated from acid sulfate soils to act as bioremediators and plant growth promoters via mechanisms of resistance. Journal of Soil Science and Plant Nutrition 20 (4):2364–78. doi: 10.1007/s42729-020-00303-0.
  • Khuong, N. Q., D. Kantachote, P. Nookongbut, J. Onthong, L. N. T. Xuan, and A. Sukhoom. 2020a. Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth. Biocatalysis and Agricultural Biotechnology 24:101520. doi: 10.1016/j.bcab.2020.101520.
  • Kruse, J., M. Koch, C. M. Khoi, G. Braun, Z. Sebesvari, and W. Amelung. 2020. Land use change from permanent rice to alternating rice-shrimp or permanent shrimp in the coastal Mekong delta, Vietnam: Changes in the nutrient status and binding forms. The Science of the Total Environment 703:134758. doi: 10.1016/j.scitotenv.2019.134758.
  • Kuo, S. 1996. Chapter 32: Phosphorus. In Methods of soil analysis part 3—Chemical methods. SSSA Book Ser. 5.3, eds. D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, 869–919. Madison, WI: SSSA, ASA. doi: 10.2136/sssabookser5.3.
  • Lascelles, J. 1978. Regulation of pyrrole synthesis. In The photosynthetic bacteria, eds. R. K. Clayton, and W. R. Sistrom, 795–808. New York, NY: Plenum.
  • Lovley, D. R., and E. J. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology 51 (4):683–9. doi: 10.1128/aem.51.4.683-689.1986.
  • Luxem, K. E., A. M. Kraepiel, L. Zhang, J. R. Waldbauer, and X. Zhang. 2020. Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation. Environmental Microbiology 22 (4):1397–408. doi: 10.1111/1462-2920.14955.
  • Mansour, M. M. F., and E. F. Ali. 2017. Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68. doi: 10.1016/j.phytochem.2017.04.016.
  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–6. doi: 10.1016/S0003-2670(00)88444-5.
  • Nelson, D. W. 1983. Determination of ammonium in KCl extracts of soils by the salicylate method. Communications in Soil Science and Plant Analysis 14 (11):1051–62. doi: 10.1080/00103628309367431.
  • Nelson, D. W, and L. E. Sommers. 1996. Chapter 34: Total carbon, organic carbon, and organic matter. In Methods of soil analysis part 3—Chemical methods. SSSA Book Ser. 5.3, eds. D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, 961–1010. Madison, WI: SSSA, ASA. doi: 10.2136/sssabookser5.3.
  • Nookongbut, P., D. Kantachote, M. Megharaj, and R. Naidu. 2018. Reduction in arsenic toxicity and uptake in rice (Oryza sativa L.) by As-resistant purple nonsulfur bacteria. Environmental Science and Pollution Research International 25 (36):36530–44. doi: 10.1007/s11356-018-3568-8.
  • Nookongbut, P., D. Kantachote, N. Q. Khuong, A. Sukhoom, M. Tantirungkij, and S. Limtong. 2019. Selection of acid-resistant purple nonsulfur bacteria from peat swamp forests to apply as biofertilizers and biocontrol agents. Journal of Soil Science and Plant Nutrition 19 (3):488–500. doi: 10.1007/s42729-019-00044-9.
  • Nookongbut, P., N. Jingjit, D. Kantachote, A. Sukhoom, and M. Tantirungkij, Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. 2020. Selection of acid tolerant purple nonsulfur bacteria for application in agriculture. Chiang Mai University Journal of Natural Sciences 19 (4):774–90. doi: 10.12982/CMUJNS.2020.0049.
  • Nunkaew, T., D. Kantachote, T. Nitoda, and H. Kanzaki. 2015a. Selection of salt tolerant purple nonsulfur bacteria producing 5-aminolevulinic acid (ALA) and reducing methane emissions from microbial rice straw degradation. Applied Soil Ecology 86:113–20. doi: 10.1016/j.apsoil.2014.10.005.
  • Nunkaew, T., D. Kantachote, T. Nitoda, H. Kanzaki, and R. J. Ritchie. 2015b. Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydrate Polymers 115:334–41. doi: 10.1016/j.carbpol.2014.08.099.
  • Otlewska, A., M. Migliore, K. Dybka-Stępień, A. Manfredini, K. Struszczyk-Świta, R. Napoli, R. Białkowska, L. Canfora, and F. Pinzari. 2020. When salt meddles between plant, soil, and microorganisms. Frontiers in Plant Science 11:553087. Article 553087. doi: 10.3389/fpls.2020.553087.
  • Panwichian, S., D. Kantachote, B. Wittayaweerasak, and M. Mallavarapu. 2011. Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electronic Journal of Biotechnology 14 (4):2– doi: 10.2225/vol14-issue4-fulltext-2.
  • Phan, L. T., and A. Kamoshita. 2020. Salinity intrusion reduces grain yield in coastal paddy fields: Case study in two estuaries in the Red River Delta, Vietnam. Paddy and Water Environment 18 (2):399–416. doi: 10.1007/s10333-020-00790-y.
  • Sakpirom, J., D. Kantachote, T. Nunkaew, and E. Khan. 2017. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology 168 (3):266–75. doi: 10.1016/j.resmic.2016.12.001.
  • Samaranayake, P., B. D. Peiris, and S. Dssanayake. 2012. Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa). International Journal of Agriculture & Biology 14 (2):296–8.
  • Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160 (1):47–56. Doi: 10.1016/0003-2697(87)90612-9.
  • Sumner, M. E, and W. P. Miller. 1996. Chapter 40: Cation exchange capacity, and exchange coefficients. In Methods of soil analysis part 3—Chemical methods. SSSA Book Ser. 5.3, eds. D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, 1201–1229. Madison, WI: SSSA, ASA. doi: 10.2136/sssabookser5.3.
  • Suzuki, Y., S. D. Kelly, K. M. Kemner, and J. F. Banfield. 2003. Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Applied and Environmental Microbiology 69 (3):1337–46. doi: 10.1128/AEM.69.3.1337-1346.2003.
  • Tan, L. V., T. Tran, and H. H. Loc. 2020. Soil and water quality indicators of diversified farming systems in a saline region of the Mekong Delta, Vietnam. Agriculture 10 (2):38. doi: 10.3390/agriculture10020038.
  • Thomas, G. W. 1996. Chapter 16: Soil pH and soil acidity. In Methods of soil analysis part 3—Chemical methods. SSSA Book Ser. 5.3, eds. D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, 475–490. Madison, WI: SSSA, ASA. doi: 10.2136/sssabookser5.3.
  • Upjohn, B. G. Fenton, and M. Conyers. 2005. Soil acidity and liming. Agfact AC.19, 3rd ed. Australia: NSW Department of Primary.
  • Wu, W. W., S. S. He, Y. Y. An, R. X. Cao, Y. P. Sun, Q. Tang, and L. J. Wang. 2019. Hydrogen peroxide as a mediator of 5-aminolevulinic acid-induced Na + retention in roots for improving salt tolerance of strawberries. Physiologia Plantarum 167 (1):5–20. doi: 10.1111/ppl.12967.
  • Xiong, J. L., H. C. Wang, X. Y. Tan, C. L. Zhang, and M. S. Naeem. 2018. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry: PPB 124:88–99. doi: 10.1016/j.plaphy.2018.01.001.
  • Zeng, J., J. M. Gao, Y. P. Chen, P. Yan, Y. Dong, Y. Shen, J. S. Guo, N. Zeng, and P. Zhang. 2016. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants. Scientific Reports 6:26721–9. doi: 10.1038/srep26721.
  • Zeng, L., M. C. Shannon, and S. M. Lesch. 2001. Timing of salinity stress affects rice growth and yield components. Agricultural Water Management 48 (3):191–206. doi: 10.1016/S0378-3774(00)00146-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.