568
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and application of optimized ZnO nanoparticles for improving yield and Zn content of rice (Oryza sativa L.) grain

, , , &
Pages 1077-1090 | Received 02 Jun 2021, Accepted 18 Feb 2022, Published online: 20 Jun 2022

References

  • Bala, R., A. Kalia, and S. S. Dhaliwal. 2019. Evaluation of efficacy of zno nanoparticles as remedial zinc nanofertilizer for rice. Journal of Soil Science and Plant Nutrition 19 (2):379–89. doi: 10.1007/s42729-019-00040-z.
  • Begum, M., M. Noor, H. Miah, and M. M. Basher. 2003. Effect of rate and method of zinc application on growth and yield of Aus rice. Pakistan Journal of Biological Sciences 6 (7):688–92. doi: 10.3923/pjbs.2003.688.692.
  • Broadley, M. R., P. J. White, J. P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. The New Phytologist 173 (4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x.
  • Burman, U., M. Saini, and P. Kumar. 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry 95 (4):605–12. doi: 10.1080/02772248.2013.803796.
  • Burt, R. (2004). Soil survey laboratory methods manual. Soil survey investigations report no. 42, version 4.0. Washington, DC, USA: Natural Resources Conservation Service, United States Department of Agriculture.
  • Cakmak, I. 2000. Tansley review no. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist 146 (2):185–205. doi: 10.1046/j.1469-8137.2000.00630.x.
  • Chapman, H, and P. Pratt. 1961. Methods of analysis for soils, plants and waters. Priced publication 4034. Division of agriculture sciences. Berkeley: University of California, 5–350.
  • Day, P. R. 1965. Particle fractionation and particle‐size analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 9:545–67.
  • Dimkpa, C. O., J. C. White, W. H. Elmer, and J. Gardea-Torresdey. 2017. Nanoparticle and ionic zn promote nutrient loading of sorghum grain under low npk fertilization. Journal of Agricultural and Food Chemistry 65 (39):8552–9. doi: 10.1021/acs.jafc.7b02961.
  • Elemike, E. E., I. M. Uzoh, D. C. Onwudiwe, and O. O. Babalola. 2019. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9 (3):499. doi: 10.3390/app9030499.
  • Faizan, M., S. Sehar, V. D. Rajput, A. Faraz, S. Afzal, T. Minkina, S. Sushkova, M. F. Adil, F. Yu, A. A. Alatar, et al. 2021. Modulation of cellular redox status and antioxidant defense system after synergistic application of zinc oxide nanoparticles and salicylic acid in rice (Oryza sativa) plant under arsenic stress. Plants 10 (11):2254. doi: 10.3390/plants10112254.
  • Farooq, M., A. Ullah, A. Rehman, A. Nawaz, A. Nadeem, A. Wakeel, F. Nadeem, and K. H. Siddique. 2018. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Research 216:53–62. doi: 10.1016/j.fcr.2017.11.004.
  • Fincheira, P., G. Tortella, N. Duran, A. B. Seabra, and O. Rubilar. 2020. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Critical Reviews in Biotechnology 40 (1):15–30. doi: 10.1080/07388551.2019.1681931.
  • Gee, G, and J. Bauder. 1986. Particle-size analysisA. Klute (ed.) Methods of soil analysis. Part 1, A. Klute. 383–411. 2nd ed. Agron. Monogr. 9. Madison, WI: ASA and SSSA.
  • Ghasemi, M., N. Ghorban, H. Madani, H-r. Mobasser, and M-z. Nouri. 2017. Effect of foliar application of zinc nano oxide on agronomic traits of two varieties of rice (Oryza sativa L. )Crop Research 52 (6):195–201. doi: 10.5958/2454-1761.2017.00017.1.
  • Hacisalihoglu, G. 2020. Zinc (zn): The last nutrient in the alphabet and shedding light on zn efficiency for the future of crop production under suboptimal zn. Plants 9 (11):1471. doi: 10.3390/plants9111471.
  • Hidoto, L., W. Worku, H. Mohammed, and T. Bunyamin. 2017. Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. Journal of Soil Science and Plant Nutrition 17: 126. doi: 10.4067/S0718-95162017005000009.
  • Jain, R., S. Srivastava, S. Solomon, A. Shrivastava, and A. Chandra. 2010. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (saccharum spp.). Acta Physiologiae Plantarum 32 (5):979–86. doi: 10.1007/s11738-010-0487-9.
  • Javed, R., M. Usman, S. Tabassum, and M. Zia. 2016. Effect of capping agents: Structural, optical and biological properties of zno nanoparticles. Applied Surface Science 386:319–26. doi: 10.1016/j.apsusc.2016.06.042.
  • Khan, P., M. Y. Memon, M. Imtiaz, N. Depar, M. Aslam, M. S. Memon, and J. A. Shah. 2012. Determining the zinc requirements of rice genotype sarshar evolved at nia, tandojam. Sarhad Journal of Agriculture 28 (1):1–7.
  • Kiran, A., A. Wakeel, R. Ishaq, R. Mubaraka, M. Ishfaq, and A. Mahmood. 2021. Zinc priming of maize seed enhances root to shoot zn translocation but not of analogous heavy metals. JAPS: Journal of Animal & Plant Sciences 31 (4):1043–51.
  • Kirkby, E. 2012. Introduction, definition and classification of nutrients. In Marschner's mineral nutrition of higher plants (pp. 3–5). United States: Acadamic press.
  • Kouhi, S. M. M., M. Lahouti, A. Ganjeali, and M. H. Entezari. 2015. Comparative effects of zno nanoparticles, zno bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water, Air, & Soil Pollution 226 (11):1–11.
  • Liu, R., and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. The Science of the Total Environment 514:131–9.
  • Mahdieh, M., M. R. Sangi, F. Bamdad, and A. Ghanem. 2018. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition 41 (18):2401–12. doi: 10.1080/01904167.2018.1510517.
  • Munir, M., A. Khan, S. M. Khan, S. A. Khan, M. Saeed, and A. Bari. 2020. Phenology and yield of coarse and fine rice under varying levels of zinc and farmyard manure. Pakistan Journal of Botany. 52 (2):557–64.
  • Nair, R., S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, and D. S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Science 179 (3):154–63. doi: 10.1016/j.plantsci.2010.04.012.
  • Olsen, S. R C. V. Cole, F S. Watanabe, and L. A. Dean. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: U.S. Department of Agriculture, Circular 939.
  • Panda, S. 2017. Physiological impact of zinc nanoparticle on germination of rice (Oryza sativa L.) seed. Journal of Plant Science and Phytopathology 1:062–70.
  • Patterson, A. 1939. The scherrer formula for X-ray particle size determination. Physical Review 56 (10):978–82. doi: 10.1103/PhysRev.56.978.
  • Pavithra, G., B. R. Reddy, M. Salimath, K. Geetha, and A. Shankar. 2017. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian Journal of Plant Physiology 22 (3):287–94. doi: 10.1007/s40502-017-0303-2.
  • Pinstrup-Andersen, P. 2007. Agricultural research and policy for better health and nutrition in developing countries: A food systems approach. Agricultural Economics 37:187–98. doi: 10.1111/j.1574-0862.2007.00244.x.
  • Prasad, T., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. R. Reddy, T. Sreeprasad, P. Sajanlal, and T. Pradeep. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35 (6):905–27. doi: 10.1080/01904167.2012.663443.
  • Rajput, V. D., T. M. Minkina, A. Behal, S. N. Sushkova, S. Mandzhieva, R. Singh, A. Gorovtsov, V. S. Tsitsuashvili, W. O. Purvis, K. A. Ghazaryan, et al. 2018. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management 9:76–84. doi: 10.1016/j.enmm.2017.12.006.
  • Rehman, A., M. Farooq, A. Ullah, F. Nadeem, S. Y. Im, S. K. Park, and D.-J. Lee. 2020. Agronomic biofortification of zinc in pakistan: Status, benefits, and constraints. Frontiers in Sustainable Food Systems 4:276. doi: 10.3389/fsufs.2020.591722.
  • Robbins, C, and C. Wiegand. 1990. Field and laboratory measurements. In Agricultural salinity assessment and management, K. K. Tanji, 201–219. New York: Am. Soc. Civ. Eng.
  • Saha, S., M. Chakraborty, D. Padhan, B. Saha, S. Murmu, K. Batabyal, A. Seth, G. Hazra, B. Mandal, and R. Bell. 2017. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Research 210:52–60. doi: 10.1016/j.fcr.2017.05.023.
  • Salahuddin, N. A., M. El-Kemary, and E. M. Ibrahim. 2015. Synthesis and characterization of zno nanoparticles via precipitation method: Effect of annealing temperature on particle size. Nanosci. Nanotechnol 5 (4):82–8.
  • Shang, Y., M. Hasan, G. J. Ahammed, M. Li, H. Yin, and J. Zhou. 2019. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 24 (14):2558. doi: 10.3390/molecules24142558.
  • Sharma, B., P. Takkar, and U. Sadana. 1982. Evaluation of levels and methods of zinc application to rice in sodic soils. Fertilizer Research 3 (2):161–7. doi: 10.1007/BF01082975.
  • Sillanpää, M. 1982. Micronutrients and the nutrient status of soils: A Global Study (Vol. 48, p. 444). Rome, Italy: FAO; FAO Soils Bull.
  • Singh, K., M. Madhusudanan, and N. Ramawat. 2019. Synthesis and characterization of zinc oxide nano particles (zno nps) and their effect on growth zn content and yield of rice (Oryza sativa L.). Synthesis 6 (3):9750–4.
  • Soltanpour, P., and S. Workman. 1979. Modification of the nh4 hco3‐dtpa soil test to omit carbon black. Communications in Soil Science and Plant Analysis 10 (11):1411–20. doi: 10.1080/00103627909366996.
  • Steel, R. D, and J. H. Torrie. 1986. Principles and procedures of statistics: A biometrical approach. New York: McGraw-Hill.
  • Wakeel, A., M. Farooq, K. Bashir, and L. Ozturk. 2018. Micronutrient malnutrition and biofortification: Recent advances and future perspectives. Plant Micronutrient Use Efficiency (pp. 225-243). Cambridge, MA, USA: Academic Press.
  • Walkley, A. 1947. A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63 (4):251–64.
  • Watson, J.-L., T. Fang, C. O. Dimkpa, D. W. Britt, J. E. McLean, A. Jacobson, and A. J. Anderson. 2015. The phytotoxicity of zno nanoparticles on wheat varies with soil properties. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 28 (1):101–12. doi: 10.1007/s10534-014-9806-8.
  • Wessells, K. R., and K. H. Brown. 2012. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One. 7 (11):e50568. doi: 10.1371/journal.pone.0050568.
  • Wissuwa, M., A. M. Ismail, and S. Yanagihara. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology 142 (2):731–41. doi: 10.1104/pp.106.085225.
  • Yang, G., H. Yuan, H. Ji, H. Liu, Y. Zhang, G. Wang, L. Chen, and Z. Guo. 2021. Effect of zno nanoparticles on the productivity, zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiology and Biochemistry 163:87–94. doi: 10.1016/j.plaphy.2021.03.053.
  • Yu, Q., L. Osborne, and Z. Rengel. 1998. Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants. Journal of Plant Nutrition 21 (7):1427–37. doi: 10.1080/01904169809365493.
  • Yuan, L., L. Wu, C. Yang, and Q. Lv. 2013. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Journal of the Science of Food and Agriculture 93 (2):254–61. doi: 10.1002/jsfa.5749.
  • Zaman, Q. U., Z. Aslam, M. Yaseen, M. Z. Ihsan, A. Khaliq, S. Fahad, S. Bashir, P. Ramzani, and M. Naeem. 2018. Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Archives of Agronomy and Soil Science 64 (2):147–61. doi: 10.1080/03650340.2017.1338343.
  • Zhang, T., H. Sun, Z. Lv, L. Cui, H. Mao, and P. M. Kopittke. 2017. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and zno nanoparticles for field-grown winter wheat. Journal of Agricultural and Food Chemistry 66 (11):2572–9. doi: 10.1021/acs.jafc.7b04153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.