116
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of water and salt synergistic regulation at the different growth stages on quality and sucrose-metabolizing enzyme activities of tomato

, ORCID Icon, , , &
Pages 1730-1744 | Received 14 Oct 2021, Accepted 29 Jun 2022, Published online: 01 Aug 2022

References

  • Al-Harbi, A., A. Hejazi, and A. Al-Omran. 2017. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences 24 (6):1274–80. doi: 10.1016/j.sjbs.2016.01.005.
  • De, P. S., A. Martino, G. Raimondi, and A. Maggio. 2007. Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomatoes. The Journal of Horticultural Science and Biotechnology 82 (2):283–9. doi: 10.1080/14620316.2007.11512230.
  • Diouf, I. A., D. Laurent, B. Frédérique, P. Laura, and C. Mathilde. 2018. Water deficit and salinity stress reveal many specific qtl for plant growth and fruit quality traits in tomato. Frontiers in Plant Science 9:279. doi: 10.3389/fpls.2018.00279.
  • El-Mogy, M. M., C. Garchery, and R. Stevens. 2018. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato(Article). Acta Agriculturae Scandinavica Section B: Soil and Plant Science 68 (8):727–37. doi: 10.1080/09064710.2018.1473482.
  • Gawad, G. A., A. Arslan, A. Gaihbe, and F. Kadouri. 2005. The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999–2002). Agricultural Water Management 78 (1-2):39–53. doi: 10.1016/j.agwat.2005.04.024.
  • Ghannem, A., I. B. Aissa, and R. Majdoub. 2021. Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environmental Science and Pollution Research International 28 (34):46553–64. doi: 10.1007/s11356-020-10407-w.
  • Hao, S., H. Cao, H. Wang, and X. Pan. 2019. Effects of water stress at different growth stages on comprehensive fruit quality and yield in different bunches of tomatoes in greenhouses. International Journal of Agricultural and Biological Engineering 12 (3):67–76. doi: 10.25165/j.ijabe.20191203.4468.
  • Hao, S., H. Cao, H. Wang, and X. Pan. 2019. The physiological responses of tomato to water stress and re-water in different growth periods. Scientia Horticulturae 249:143–54. doi: 10.1016/j.scienta.2019.01.045.
  • Hayata, Y., T. Tabe, S. Kondo, and K. Inoue. 1998. The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. Engei Gakkai Zasshi 67 (5):759–66. doi: 10.2503/jjshs.67.759.
  • Kaleem, F., G. Shabir, K. Aslam, S. Rasul, H. Manzoor, S. M. Shah, and A. R. Khan. 2018. An overview of the genetics of plant response to salt stress: present status and the way forward. Applied Biochemistry and Biotechnology 186 (2):306–34. doi: 10.1007/s12010-018-2738-y.
  • Khelil, A.,T. Menu, andB. Ricard. 2007. Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiology and Biochemistry : PPB 45 (8):551–9. doi:10.1016/j.plaphy.2007.05.003.
  • Li, H., X. Pei, and Y. Wang. 2009. Effect of Na2SO4 treatment on yield and quality of tomato. Chinese Agricultural Science Bulletin 25 (4):191–4. doi: CNKI:SUN:ZNTB.0.2009-04-046
  • Li, J., P. Tian, J. Li, Y. Gao, H. Ren, and M. Liu. 2018. Effects of saline water irrigation on sugar accumulation and activities of sucrose-metabolizing enzymes of greenhouse tomato. Journal of Northwest A & F University (Natural Science Edition) 46 (03):101–10. doi: 10.13207/j.cnki.jnwafu.2018.03.013.
  • Lu, S., F. Qi, and T. Li. 2012. Effect of NaCl and PEG iso-osmotic stresses on photosynttetic characteristics and sucrose metabolizing in tomato leaf. Acta Agriculturae Boreali-Sinica 27 (3):136–41. doi: 10.3969/j.issn.1000-7091.2012.03.027.
  • Maria-Sole, B., D. K. Kosma, and F. H. Barrios-Masias. 2022. Salt tolerance mechanisms in the lycopersicon clade and their trade-offs. AoB Plants 14 (1):plab072. doi: 10.5539/jas.v10n12p543
  • Minhas, P. S., T. B. Ramos, A. Ben-Gal, and L. S. Pereira. 2020. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management 227:105832. doi: 10.1016/j.agwat.2019.105832.
  • Nahar, K, and R. Gretzmacher. 2002. Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Bodenkultur 53 (1):45–51.
  • Parihar, P., S. Singh, R. Singh, V. P. Singh, and S. M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research International 22 (6):4056–75. doi: 10.1007/s11356-014-3739-1.
  • Qi, H., T. Li, J. Zhang, and H. Liu. 2006. Relationship between carbohydrate change and related enzymes activities during tomato fruit development. Acta Horticulturae Sinica 33 (2):294–9. doi: 10.16420/j.issn.0513-353x.2006.02.014.
  • Qi, H., T. Li, J. Zhang, L. Wang, and Y. Chen. 2004. Effects of irrigation on sucrose metabolism, dry matter distribution and fruit quality of tomato under water deficit. Scientia Agricultura Sinica 37 (07):1045–9. doi: 10.3321/j.issn:0578-1752.2004.07.017.
  • Quinet, M., T. Angosto, F. J. Yuste-Lisbona, R. Blanchard-Gros, S. Bigot, J.-P. Martinez, and S. Lutts. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554.doi: 10.3389/fpls.2019.01554.
  • Randome, I.,S. Basu, andA. Pereira. 2017. Effect of different stress treatments on mature green tomatoes (Solanum lycopersicum) to enhance fruit quality. African Journal of Food, Agriculture, Nutrition and Development 17 (04):12546–56. doi:10.18697/ajfand.80.16550.
  • Riffat, A, and M. Ahmad. 2018. Changes in organic and inorganic osmolytes of maize (Zea mays L.) by sulfur application under salt stress conditions. Journal of Agricultural Science 10 (12):543. doi: 10.1093/aobpla/plab072.
  • Stein, O, and D. Granot. 2019. An overview of sucrose synthases in plants (Review). Frontiers in Plant Science 10:95. doi: 10.3389/fpls.2019.00095.
  • Sun, L., S. Wang, Y. Zhang, J. Li, X. Wang, R. Wang, W. Lyu, N. Chen, and Q. Wang. 2018. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use. Agriculture Ecosystems & Environment 251:67–77. doi: 10.1016/j.agee.2017.09.011.
  • Wang, W, and Y. Gong 2021. Effects of water and salt coordinated regulation at the different growth stages on water consumption and yield of tomato. International Journal of Agricultural and Biological Engineering 14 (3):96–105. doi: 10.25165/j.ijabe.20211404.6238.
  • Xue, F., W. Liu, H. Cao, L. Song, S. Ji, L. Tong, and R. Ding. 2021. Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum 172 (4):2070–8. doi: 10.1111/ppl.13441.
  • Yang, H., T. Du, X. Mao, R. Ding, and M. K. Shukla. 2019. A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model. Agricultural Water Management 213:116–27. doi: 10.1016/j.agwat.2018.10.010.
  • Yang, Z., Y. Qiu, Z. Liu, Y. Chen, and W. Tan. 2016. The effects of soil moisture stress on the growth of root and above-ground parts of greenhouse tomato crops. Acta Ecologica Sinica 36:748–57. doi: 10.5846/stxb201403310606.
  • Yoshida, T, and K. Yamaguchi-Shinozaki. 2021. Metabolic engineering: Towards water deficiency adapted crop plants. Journal of Plant Physiology 258-259 (9):153375. doi: 10.1016/j.jplph.2021.153375.
  • Zhang, P., M. Senge, and Y. Dai. 2017. Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Communications in Soil Science and Plant Analysis 48 (6):624–34. doi: 10.1080/00103624.2016.1269803.
  • Zhang, H., Y. Xiong, G. Huang, X. Xu, and Q. Huang. 2017. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agricultural Water Management 179:205–14. doi: 10.1016/j.agwat.2016.07.022.
  • Živanović, B., S. Milić Komić, T. Tosti, M. Vidović, L. Prokić, and S. Veljović Jovanović. 2020. Leaf soluble sugars and free amino acids as important components of abscisic acid—mediated drought response in tomato. Plants 9 (9):1147. doi: 10.3390/plants9091147.
  • Zushi, K, and N. Matsuzoe. 1998. Effect of soil water deficit on vitamin C sugar, organic acid, amino acid and carotene conterts of large-fruit tomato. Engei Gakkai Zasshi 67 (6):927–33. doi: 10.2503/jjshs.67.927.
  • Zushi, K, and N. Matsuzoe. 2015. Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. Scientia Horticulturae 184:8–17. doi: 10.1016/j.scienta.2014.12.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.