1,322
Views
19
CrossRef citations to date
0
Altmetric
Review

Plants’ responses under drought stress conditions: Effects of strategic management approaches—a review

, , , & ORCID Icon
Pages 2198-2230 | Received 24 Feb 2022, Accepted 19 Jul 2022, Published online: 31 Jul 2022

References

  • Abbaszadeh, B., M. Layeghhaghighi, R. Azimi, and N. Hadi. 2020. Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products 144:111893. doi: 10.1016/j.indcrop.2019.111893.
  • Abdel-Fattah, G. M., A. A. Asrar, S. M. Al-Amri, and E. M. Abdel-Salam. 2014. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica 52 (4):581–8. doi: 10.1007/s11099-014-0067-0.
  • Abdel-Salam, E., A. Alatar, and M. A. El-Sheikh. 2018. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences 25 (8):1772–80. doi: 10.1016/j.sjbs.2017.10.015.
  • Abid, G., M. M’hamdi, D. Mingeot, M. Aouida, I. Aroua, Y. Muhovski, K. Sassi, F. Souissi, K. Mannai, M. Jebara, et al. 2017. Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme activities and gene expression patterns in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science 63 (4):536–52. doi: 10.1080/03650340.2016.1224857.
  • Abou-Baker, N. H., M. Ouis, and M. Abd-Eladl. 2018. Appraisal of agriglass in promoting maize production under abiotic stress conditions. Silicon 10 (5):1841–9. doi: 10.1007/s12633-017-9684-0.
  • Achakzai, A. K. K. 2009. Effect of water stress on imbibition, germination and seedling growth of maize cultivars. Sarhad Journal of Agriculture 25 (2):165–72.
  • Adeyemi, O., R. Keshavarz-Afshar, E. Jahanzad, M. L. Battaglia, Y. Luo, and A. Sadeghpour. 2020. Effect of wheat cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy 10 (8):1081. doi: 10.3390/agronomy10081081.
  • Adiku, S. G. K., H. Ozier-Lafontaine, and T. Bajazet. 2001. Patterns of root growth and water uptake of a maize-cowpea mixture grown under greenhouse conditions. Plant and Soil 235 (1):85–94. doi: 10.1023/A:1011847214706.
  • Afrousheh, M, and A. Javanshah. 2020. The effect of humic acid on the growth and physiological indices of pistachio seedling (Pistacia vera) under drought stress. Journal of Nuts 11 (1):1–12.
  • Ahmad, N. S., S. H. S. Kareem, K. M. Mustafa, and D. A. Ahmad. 2017. Early screening of some Kurdistan wheat (Triticum aestivum L.) cultivars under drought stress. Journal of Agricultural Science 9 (2):88–103. doi: 10.5539/jas.v9n2p88.
  • Ahmadi, A., Y. Emam, and M. Pessarakli. 2010. Biochemical changes in maize seedlings exposed to drought stress conditions at different nitrogen levels. Journal of Plant Nutrition 33 (4):541–56. doi: 10.1080/01904160903506274.
  • Aiyafar, S., H. M. Poudineh, and M. Forouzandeh. 2015. Effect of humic acid on qualitative and quantitative characteristics and essential oil of black cumin (Nigella sativa L.) under water deficit stress. DAV International Journal of Science 4:89–102.
  • Akhtar, S. S., G. Li, M. N. Andersen, and F. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138:37–44. doi: 10.1016/j.agwat.2014.02.016.
  • Al-Shareef, A. R., F. S. El-Nakhlawy, and S. M. Ismail. 2018. Enhanced mungbean and water productivity under full irrigation and stress using humic acid in arid regions. Legume Research-An International Journal 41 (3):428–31.
  • Alderfasi, A. A., M. M. Selim, and B. A. Alhammad. 2016. Evaluation of plant densities and various irrigation regimes of sorghum (Sorghum bicolor L.) under low water supply. Journal of Water Resource and Protection 08 (01):1–11. doi: 10.4236/jwarp.2016.81001.
  • Alhaj Hamoud, Y., Z. Wang, X. Guo, H. Shaghaleh, M. Sheteiwy, S. Chen, R. Qiu, and M. Elbashier. 2019. Effect of irrigation regimes and soil texture on the potassium utilization efficiency of rice. Agronomy 9 (2):100. doi: 10.3390/agronomy9020100.
  • Ali, A. M., S. M. Ibrahim, and I. Abou-Amer. 2019. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egyptian Journal of Soil Science 59 (1):15–23. doi: 10.21608/ejss.2019.7086.1236.
  • Ali, Q., M. T. Javed, A. Noman, M. Z. Haider, M. Waseem, N. Iqbal, M. Waseem, M. S. Shah, F. Shahzad, R. Perveen, et al. 2018. Assessment of drought tolerance in mung bean cultivars/lines as depicted by the activities of germination enzymes, seedling’s antioxidative potential and nutrient acquisition. Archives of Agronomy and Soil Science 64 (1):84–102. doi: 10.1080/03650340.2017.1335393.
  • Alori, E. T., M. O. Dare, and O. O. Babalola. 2017. Microbial inoculants for soil quality and plant health. In Sustainable agriculture reviews, ed. E. Lichtfouse, 281–307. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-48006-0_9.
  • Alqudah, A. M., N. H. Samarah, and R. E. Mullen. 2011. Drought stress effect on crop pollination, seed set, yield and quality. In Alternative farming systems, biotechnology, drought stress and ecological fertilization, ed. E. Lichtfouse, 193–213. Dordrecht, Netherlands: Springer. doi: 10.1007/978-94-007-0186-1_6.
  • Alvarez-Flores, R., A. Nguyen-Thi-Truc, S. Peredo-Parada, R. Joffre, and T. Winkel. 2018. Rooting plasticity in wild and cultivated Andean chenopodium species under soil water deficit. Plant and Soil 425 (1-2):479–92. doi: 10.1007/s11104-018-3588-7.
  • Amirnia, R., M. Ghiyasi, S. S. Moghaddam, A. Rahimi, C. A. Damalas, and S. Heydarzadeh. 2019. Nitrogen-fixing soil bacteria plus mycorrhizal fungi improve seed yield and quality traits of lentil (Lens culinaris Medik). Journal of Soil Science and Plant Nutrition 19 (3):592–602. doi: 10.1007/s42729-019-00058-3.
  • Anjum, S. A., L. C. Wang, M. Farooq, M. Hussain, L. L. Xue, and C. M. Zou. 2011. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science 197 (3):177–85. doi: 10.1111/j.1439-037X.2010.00459.x.
  • Anjum, S. A., U. Ashraf, A. Zohaib, M. Tanveer, M. Naeem, I. Ali, T. Tabassum, and U. Nazir. 2017. Growth and developmental responses of crop plants under drought stress: A review. Zemdirbyste-Agriculture 104 (3):267–76. doi: 10.13080/z-a.2017.104.034.
  • Arancon, N. Q., C. A. Edwards, S. Lee, and R. Byrne. 2006. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology 42:S65–S569. doi: 10.1016/j.ejsobi.2006.06.004.
  • Asemanrafat, M, and T. Honar. 2017. Effect of water stress and plant density on canopy temperature, yield components and protein concentration of red bean (Phaseolus vulgaris L. cv. Akhtar). International Journal of Plant Production 11 (2):241–58.
  • A. Aslam, M., M. A. Maqbool, and R, Cengiz. 2015. Effects of drought on maize. In Drought Stress in Maize (Zea mays L.), Effects, Resistance, Mechanisms, Global Achievements and Biological Strategies for Improvements, M. Aslam, M. A. Maqbool, and R. Cengiz (Eds.), 517. New York: Springer. doi: 10.1007/978-3-319-25442-5
  • Asrar, A.-W A, and K. M. Elhindi. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences 18 (1):93–8. doi: 10.1016/j.sjbs.2010.06.007.
  • Atkinson, C. J. 2018. How good is the evidence that soil‐applied biochar improves water‐holding capacity? Soil Use and Management 34 (2):177–86. doi: 10.1111/sum.12413.
  • Awad, A. A. M., M. M. Rady, W. M. Semida, E. E. Belal, W. M. Omran, H. M. Al-Yasi, and E. F. Ali. 2021. Foliar nourishment with different zinc-containing forms effectively sustains carrot performance in zinc-deficient soil. Agronomy 11 (9):1853–18. doi: 10.3390/agronomy11091853.
  • Awasthi, R., N. Kaushal, V. Vadez, N. C. Turner, J. Berger, K. H. M. Siddique, and H. Nayyar. 2014. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology 41 (11):1148–67. doi: 10.1071/FP13340.
  • Aydin, A., C. Kant, and M. Turan. 2012. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research 7 (7):1073–86.
  • Babaei, L., M. M. Sharifani, R. Darvishzadeh, N. Abbaspour, and M. Henareh. 2021. Impact of drought stress on photosynthetic response of some pear species. International Journal of Horticultural Science and Technology 8 (4):353–69.
  • Bárzana, G, and M. Carvajal. 2020. Genetic regulation of water and nutrient transport in water stress tolerance in roots. Journal of Biotechnology 324:134–42. doi: 10.1016/j.jbiotec.2020.10.003.
  • Batool, A., N. A. Akram, Z.-G. Cheng, G.-C. Lv, M. Ashraf, M. Afzal, J.-L. Xiong, J.-Y. Wang, and Y.-C. Xiong. 2019. Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. Plant Physiology and Biochemistry 139:11–20. doi: 10.1016/j.plaphy.2019.03.001.
  • Beheshti, S., A. Tadayyon, and S. Fallah. 2017. Effect of humic acid on the yield and yield components of Lima Bean (Phaseolus lunatus L.) under drought stress conditions. Iranian Journal Pulses Research 7 (2):175–87.
  • Behrooz, A., K. Vahdati, F. Rejali, M. Lotfi, S. Sarikhani, and C. Leslie. 2019. Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54 (6):1087–92. doi: 10.21273/HORTSCI13961-19.
  • Belaqziz, S., S. Khabba, M. H. Kharrou, E. H. Bouras, S. Er-Raki, and A. Chehbouni. 2021. Optimizing the sowing date to improve water management and wheat yield in a large irrigation scheme, through a remote sensing and an evolution strategy-based approach. Remote Sensing 13 (18):3789. doi: 10.3390/rs13183789.
  • Bertolino, L. T., R. S. Caine, and J. E. Gray. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science 10:225. doi: 10.3389/fpls.2019.00225.
  • Bijanzadeh, E., V. Barati, Y. Emam, and M. Pessarakli. 2019. Sowing date effects on dry matter remobilization and yield of triticale (Triticosecale wittmack) under late season drought stress. Journal of Plant Nutrition 42 (7):681–95. doi: 10.1080/01904167.2019.1568463.
  • Bista, D. R., S. A. Heckathorn, D. M. Jayawardena, S. Mishra, and J. K. Boldt. 2018. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 7 (2):28. doi: 10.3390/plants7020028.
  • Blanco-Canqui, H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal 81 (4):687–711. doi: 10.2136/sssaj2017.01.0017.
  • Botwright, T. L., A. G. Condon, G. J. Rebetzke, and R. A. Richards. 2002. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Australian Journal of Agricultural Research 53 (10):1137–45. doi: 10.1071/AR02007.
  • Boutasknit, A., M. Baslam, M. Ait-El-Mokhtar, M. Anli, R. Ben-Laouane, A. Douira, C. El Modafar, T. Mitsui, S. Wahbi, A. Meddich, et al. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants 9 (1):80. doi: 10.3390/plants9010080.
  • Bowles, T. M., M. Mooshammer, Y. Socolar, F. Calderón, M. A. Cavigelli, S. W. Culman, W. Deen, C. F. Drury, A. Garcia y Garcia, A. C. Gaudin, et al. 2020. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2 (3):284–93. doi: 10.1016/j.oneear.2020.02.007.
  • Boyer, J. S., S. C. Wong, and G. D. Farquhar. 1997. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiology 114 (1):185–91. doi: 10.1104/pp.114.1.185.
  • Brunner, I., C. Herzog, M. A. Dawes, M. Arend, and C. Sperisen. 2015. How tree roots respond to drought. Frontiers in Plant Science 6:547. doi: 10.3389/fpls.2015.00547.
  • Brunner, I., E. G. Pannatier, B. Frey, A. Rigling, W. Landolt, S. Zimmermann, and M. Dobbertin. 2009. Morphological and physiological responses of Scots pine fine roots to water supply in a dry climatic region in Switzerland. Tree Physiology 29 (4):541–50. doi: 10.1093/treephys/tpn046.
  • Busari, M. A., S. S. Kukal, A. Kaur, R. Bhatt, and A. A. Dulazi. 2015. Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research 3 (2):119–29. doi: 10.1016/j.iswcr.2015.05.002.
  • Busscher, W. J., J. M. Novak, and M. Ahmedna. 2011. Physical effects of organic matter amendment of a southeastern US coastal loamy sand. Soil Science 176 (12):661–7. doi: 10.1097/SS.0b013e3182357ca9.
  • Chen, J., Y. He, and P. Li. 2021. Effects of tillage alteration on soil water content, maize crop water potential and grain yield under subtropical humid climate conditions. International Agrophysics 35 (1):1–9. doi: 10.31545/intagr/131668.
  • Chen, W., P. Meng, H. Feng, and C. Wang. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A.Mey. under drought stress. Forests 11 (10):1117–29. doi: 10.3390/f11101117.
  • Chen, X., J. Zhou, X. Wang, A. M. Blackmer, and F. Zhang. 2004. Optimal rates of nitrogen fertilization for a winter wheat-corn cropping system in Northern China. Communications in Soil Science and Plant Analysis 35 (3-4):583–97. doi: 10.1081/CSS-120029734.
  • Clarke, J. M., C. A. Campbell, H. W. Cutforth, R. M. DePauw, and G. E. Winkleman. 1990. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Canadian Journal of Plant Science 70 (4):965–77. doi: 10.4141/cjps90-119.
  • Comas, L. H., T. J. Trout, K. C. DeJonge, H. Zhang, and S. M. Gleason. 2019. Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural Water Management 212:433–40. doi: 10.1016/j.agwat.2018.07.015.
  • Cortina, J., A. Vilagrosa, and R. Trubat. 2013. The role of nutrients for improving seedling quality in drylands. New Forests 44 (5):719–32. doi: 10.1007/s11056-013-9379-3.
  • Dehnavi, M. M., M. Misagh, A. Yadavi, and M. Merajipoor. 2017. Physiological responses of sesame (Sesamum indicum L.) to foliar application of boron and zincunder drought stress. Journal of Plant Process and Function 6 (20):27–36.
  • Delachiave, M. E. A., and S. Z. de Pinho. 2003. Germination of Senna occidentalis link: Seed at different osmotic potential levels. Brazilian Archives of Biology and Technology 46 (2):163–6. doi: 10.1590/S1516-89132003000200004.
  • Dhillon, J. S., E. M. Eickhoff, R. W. Mullen, and W. R. Raun. 2019. World potassium use efficiency in cereal crops. Agronomy Journal 111 (2):889–96. doi: 10.2134/agronj2018.07.0462.
  • El Sabagh, A., A. Hossain, C. Barutcular, et al. 2019. Wheat (Triticum aestivum L.) production under drought and heat stress–adverse effects, mechanisms and mitigation: A review. Applied Ecology and Environmental Research 17 (4):8307–32. doi: 10.15666/aeer/1704_83078332.
  • Elgamaal, A. A., and H. F. Maswada. 2013. Response of three yellow maize hybrids to exogenous salicylic acid under two irrigation intervals. Asian Journal of Crop Science 5 (3):264–74. doi: 10.3923/ajcs.2013.264.274.
  • Elhakem, A. H. 2019. Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in mentha arvensis under drought stress. Journal of Biological Sciences 19 (6):372–80. doi: 10.3923/jbs.2019.372.380.
  • Ezati, N., A. Maleki, and A. Fathi. 2020. Effect of drought stress and spraying of gibberellic acid and salicylic acid on the quantitative and qualitative yield of canola (Brassica napus). Journal of Iranian Plant Ecophysiological Research 14 (56):94–109.
  • Ezzati Lotfabadi, Z., W. Weisany, N. Abdul‐razzak Tahir, and A. Mohammadi Torkashvand. 2022. Arbuscular mycorrhizal fungi species improve the fatty acids profile and nutrients status of soybean cultivars grown under drought stress. Journal of Applied Microbiology 132 (3):2177–88. doi: 10.1111/jam.15326.
  • Fageria, N. K. 2014. Yield and yield components and phosphorus use efficiency of lowland rice genotypes. Journal of Plant Nutrition 37 (7):979–89. doi: 10.1080/01904167.2014.888735.
  • Fahad, S., A. A. Bajwa, U. Nazir, S. A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, et al. 2017. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science 8:1147. doi: 10.3389/fpls.2017.01147.
  • Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development 29 (1):185–212. doi.org/ doi: 10.1007/978-90-481-2666-8_12.
  • Farooq, M., M. Hussain, A. Wahid, and K. H. M. Siddique. 2012. Drought stress in plants: An overview. In Plant responses to drought stress: From morphological to molecular features, ed. R. Aroca, 1–33. Berlin: Springer. doi.org/ doi: 10.1007/978-3-642-32653-0_1.
  • Farooq, M., N. Kobayashi, O. Ito, A. Wahid, and R. Serraj. 2010. Broader leaves result in better performance of indica rice under drought stress. Journal of Plant Physiology 167 (13):1066–75. doi.org/ doi: 10.1016/j.jplph.2010.03.003.
  • Farooq, M., L. Romdhane, A. Rehman, A. K. M. Al-Alawi, W. M. Al-Busaidi, S. A. Asad, and D.-J. Lee. 2021. Integration of seed priming and biochar application improves drought tolerance in cowpea. Journal of Plant Growth Regulation 40 (5):1972–80. doi.org/ doi: 10.1007/s00344-020-10245-7.
  • Fathi, A., and D. B. Tari. 2016. Effect of drought stress and its mechanism in plants. International Journal of Life Sciences 10 (1):1–6. doi: 10.3126/ijls.v10i1.14509.
  • Fathi, A., and E. Zeidali. 2021. Conservation tillage and nitrogen fertilizer: A review of corn growth, yield and weed management. Central Asian Journal of Environmental Science and Technology Innovation 1 (3):121–42.
  • Francia, E., A. Tondelli, F. Rizza, F. W. Badeck, W. T. Thomas, F. Van Eeuwijk, I. Romagosa, A. M. Stanca, and N. Pecchioni. 2013. Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy 8 (1):1–8. doi: 10.4081/ija.2013.e1.
  • Galaitsi, S. E., R. Russell, A. Bishara, J. L. Durant, J. Bogle, and A. Huber-Lee. 2016. Intermittent domestic water supply: A critical review and analysis of causal-consequential pathways. Water 8 (7):274. doi.org/ doi: 10.3390/w8070274.
  • Garg, B. K. 2003. Nutrient uptake and management under drought: Nutrient-moisture interaction. Current Agriculture Research Journal 27(1/2):1–8.
  • Gaudin, A. C. M., T. N. Tolhurst, A. P. Ker, K. Janovicek, C. Tortora, R. C. Martin, and W. Deen. 2015. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS One 10 (2):e0113261. doi.org/ doi: 10.1371/journal.pone.0113261.
  • Ge, T.-D., N.-B. Sun, L.-P. Bai, C.-L. Tong, and F.-G. Sui. 2012. Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiologiae Plantarum 34 (6):2179–86. doi.org/ doi: 10.1007/s11738-012-1018-7.
  • Ghaderi, N., S. Normohammadi, and T. Javadi. 2015. Morpho-physiological responses of strawberry (Fragaria × ananassa) to exogenous salicylic acid application under drought stress. Journal of Agricultural Science and Technology 17 (1):167–78.
  • Ghadirnezhad, R, and A. Fallah. 2014. Temperature effect on yield and yield components of different rice cultivars in flowering stage. International Journal of Agronomy 2014:1–4. doi: 10.1155/2014/846707.
  • Ghasemkheyli, F. T., H. Pirdashti, S. K. Fahimeh, E. Khalili, and E. T. Fard. 2014. Ameliorative role of Trichoderma fungi on cadmium and copper toxicity in wheat (Triticum aestivum L). International Journal of Biosciences 6655:294–305. doi: 10.12692/ijb/4.11.294-305.
  • Gholinezhad, E. 2017. Effect of two species mycorrhizal fungi on quantitative and qualitative yield of sesame (Sesamum indicum L.) landraces in different levels of drought stress. Iranian Journal of Field Crops Research 15 (1):150–67.
  • González, A., and L. Ayerbe. 2010. Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172 (3):341–9. doi: 10.1007/s10681-009-0027-0.
  • Gonzalez-Dugo, V., J.-L. Durand, and F. Gastal. 2010. Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development 30 (3):529–44. doi: 10.1051/agro/2009059.
  • Gowda, V. R. P., A. Henry, A. Yamauchi, H. E. Shashidhar, and R. Serraj. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research 122 (1):1–13. doi: 10.1016/j.fcr.2011.03.001.
  • Gui, Y.-W., M. S. Sheteiwy, S.-G. Zhu, A. Batool, and Y.-C. Xiong. 2021. Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environmental and Experimental Botany 181:104287. doi: 10.1016/j.envexpbot.2020.104287.
  • Gupta, C., and D. Prakash. 2019. Enhancement of active constituents of medicinal plants through the use of microbes. In Plant biotic interactions, ed. A. Varma, S. Tripathi, and R. Prasad, 227–41. Cham, Switzerland: Springer Nature. doi: 10.1007/978-3-030-26657-8_13.
  • Haider, I., M. A. S. Raza, R. Iqbal, M. U. Aslam, M. Habib-ur-Rahman, S. Raja, M. T. Khan, M. M. Aslam, M. Waqas, S. Ahmad, et al. 2020. Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. Journal of Saudi Chemical Society 24 (12):974–81. doi: 10.1016/j.jscs.2020.10.005.
  • Hao, X., P. Li, Y. Feng, X. Han, J. Gao, E. Lin, and Y. Han. 2013. Effects of fully open-air [CO2] elevation on leaf photosynthesis and ultrastructure of Isatis indigotica Fort. PloS One 8 (9):e74600. doi.org/ doi: 10.1371/journal.pone.0074600.
  • Hartmann, H. 2011. Will a 385 million year‐struggle for light become a struggle for water and for carbon?—How trees may cope with more frequent climate change‐type drought events. Global Change Biology 17 (1):642–55. doi.org/ doi: 10.1111/j.1365-2486.2010.02248.x.
  • Hasan, M. M., M. A. Ali, M. H. Soliman, A. A. Alqarawi, E. F. Abd_Allah, and X.-W. Fang. 2020. Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. Journal of Plant Interactions 15 (1):371–85. doi.org/ doi: 10.1080/17429145.2020.1832267.
  • Hasanuzzaman, M., N. W. Davies, L. Shabala, M. Zhou, T. J. Brodribb, and S. Shabala. 2017. Residual transpiration as a component of salinity stress tolerance mechanism: A case study for barley. BMC Plant Biology 17 (1):1–12. doi.org/ doi: 10.1186/s12870-017-1054-y.
  • Hassan, M. U., M. Aamer, M. Umer Chattha, T. Haiying, B. Shahzad, L. Barbanti, M. Nawaz, A. Rasheed, A. Afzal, Y. Liu, et al. 2020. The critical role of zinc in plants facing the drought stress. Agriculture 10 (9):396–20. doi: 10.3390/agriculture10090396.
  • Hatami, H. 2017. The effect of zinc and humic acid applications on yield and yield components of sunflower in drought stress. Journal of Advanced Agricultural Technologies 4 (1):36–9. doi: 10.18178/joaat.4.1.36-39.
  • He, M., and F. A. Dijkstra. 2014. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist 204 (4):924–31. doi: 10.1111/nph.12952.
  • Hoang, T.-L.-H., D.-C. Jang, Q.-T. Nguyen, W.-H. Na, I.-S. Kim, and N.-T. Vu. 2021. Biochar-improved growth and physiology of Ehretia asperula under water-deficit condition. Applied Sciences 11 (22):10685. doi.org/ doi: 10.3390/app112210685.
  • Honda, E. A., N. A. L. Pilon, and G. Durigan. 2019. The relationship between plant density and survival to water stress in seedlings of a legume tree. Acta Botanica Brasilica 33 (3):602–6. doi: 10.1590/0102-33062018abb0432.
  • Hoseinlou, S. H., A. Ebadi, M. Ghaffari, and E. Mostafaei. 2013. Nitrogen use efficiency under water deficit condition in spring barley. International Journal of Agronomy and Plant Production 4 (5):3681–7.
  • Hossain, A., J. A. T. da Silva, M. V. Lozovskaya, V. P. Zvolinsky, and V. I. Mukhortov. 2012. High temperature combined with drought affect rainfed spring wheat and barley in south-eastern Russia: Yield, relative performance and heat susceptibility index. Journal of Plant Breeding and Crop Science 4 (11):184–96.
  • Huang, J., F. Wu, T. Hu, L. Liu, J. Wang, X. Wang, C. Liang, and J. Liu. 2021. Interactive effects of drought–flood abrupt alternation on morpho-agronomic and nutrient use traits in rice. Agronomy 11 (11):2103. doi.org/ doi: 10.3390/agronomy11112103.
  • Hussain, H. A., S. Hussain, A. Khaliq, U. Ashraf, S. A. Anjum, S. Men, and L. Wang. 2018. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science 9:393. doi.org/ doi: 10.3389/fpls.2018.00393.
  • Ibrahim, E. A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology 192:38–46. doi.org/ doi: 10.1016/j.jplph.2015.12.011.
  • Ishida, A., J.-Y. Yamazaki, H. Harayama, K. Yazaki, P. Ladpala, T. Nakano, M. Adachi, K. Yoshimura, S. Panuthai, D. Staporn, et al. 2014. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand. Tree Physiology 34 (1):15–28. doi.org/ doi: 10.1093/treephys/tpt107.
  • Jabborova, D., K. Annapurna, A. M. Al-Sadi, S. A. Alharbi, R. Datta, and A. T. K. Zuan. 2021. Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences 28 (10):5490–9. doi: 10.1016/j.sjbs.2021.08.016.
  • Jahani, F., H. R. Tohidi-Moghadam, H. R. Larijani, F. Ghooshchi, and M. Oveysi. 2021. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint (Mentha piperita L.) under drought stress condition. Arabian Journal of Geosciences 14 (8):1–12. doi.org/ doi: 10.1007/s12517-021-07024-3.
  • Jaleel, C. A., P. Manivannan, A. Wahid, M. Farooq, H. J. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology 11 (1):100–5.
  • Jha, S., V. K. Sehgal, and Y. V. Subbarao. 2015. Effect of sowing direction and crop geometry on water use efficiency and productivity of Indian mustard (Brassica juncea. L.) in semi arid region of India. Journal of Oilseed Brassica 6 (2):257–64.
  • Joshi, B., A. Chaudhary, H. Singh, and P. A. Kumar. 2020. Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant and Soil 457 (1-2):225–40. doi.org/ doi: 10.1007/s11104-020-04730-x.
  • Júnior, L. A., A. Rosa, N. Pereira, R. B. Pescador, and E. A. de Andrade. 2018. Yield and nutrient uptake of common bean cultivars as affected by plant population and growing season. Journal of Agricultural Science 10 (10):308–15. doi.org/ doi: 10.5539/jas.v10n10p308.
  • Kakhki, S. F. F., M. Goldani, and A. G. Arian. 2019. Evaluation response of photosynthesis of stevia plant (Stevia rebaudiana Var. Bertoni) to potassium humate and photoperiod. Indian Journal of Agricultural Research 53 (of):348–52. doi: 10.18805/IJARe.A-383.
  • Kamali, S, and A. Mehraban. 2020. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. PLoS One 15 (12):e0243824. doi.org/ doi: 10.1371/journal.pone.0243824.
  • Kamara, A. Y., A. Menkir, B. Badu-Apraku, and O. Ibikunle. 2003. The influence of drought stress on growth, yield and yield components of selected maize genotypes. The Journal of Agricultural Science 141 (1):43–50. doi: 10.1017/S0021859603003423.
  • Karami, H., A. Maleki, and A. Fathi. 2018. Determination effect of mycorrhiza and vermicompost on accumulation of seed nutrient elements in maize (Zea mays L.) affected by chemical fertilizer. Journal of Crop Nutrition 4 (3):15–29.
  • Karami, S., S. A. M. M. Sanavy, S. Ghanehpoor, and H. Keshavarz. 2016. Effect of foliar zinc application on yield, physiological traits and seed vigor of two soybean cultivars under water deficit. Notulae Scientia Biologicae 8 (2):181–91. doi.org/ doi: 10.15835/nsb829793.
  • Karhu, K., T. Mattila, I. Bergström, and K. Regina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agriculture, Ecosystems and Environment 140 (1-2):309–13. doi: 10.1016/j.agee.2010.12.005.
  • Karim, M. R., Y. Zhang, R. Zhao, X. Chen, F. Zhang, and C. Zou. 2012. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. Journal of Plant Nutrition and Soil Science 175 (1):142–51. doi: 10.1002/jpln.201100141.
  • Kartika, K., J.-I. Sakagami, B. Lakitan, S. Yabuta, I. Akagi, L. I. Widuri, E. Siaga, H. Iwanaga, and A. H. I. Nurrahma. 2021. Rice husk biochar effects on improving soil properties and root development in rice (Oryza glaberrima steud.) exposed to drought stress during early reproductive stage. AIMS Agriculture and Food 6 (2):737–51. doi: 10.3934/agrfood.2021043.
  • Kavar, T., M. Maras, M. Kidrič, J. Šuštar-Vozlič, and V. Meglič. 2008. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Molecular Breeding 21 (2):159–72. doi: 10.1007/s11032-007-9116-8.
  • Khan, M. I., G. Shabbir, Z. Akram, M. K. N. Shah, M. Ansar, and N. M. Cheema. 2011. Character association studies of seedling traits in different wheat genotypes under moisture stress conditions. SABRAO Journal of Breeding and Genetics 45 (3):458–67.
  • Khan, M. I. R., M. Fatma, T. S. Per, N. A. Anjum, and N. A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6:462–17. doi: 10.3389/fpls.2015.00462.
  • Khan, R., S. Gul, M. Hamayun, M. Shah, A. Sayyed, H. Ismail, and H. Gul. 2016. Effect of foliar application of zinc and manganese on growth and some biochemical constituents of Brassica junceae grown under water stress. Journal of Agriculture and Environmental Sciences 16:984–97. doi:10.5829/idosi.aejaes.2016.16.5.12923.
  • Khan, Z., M. N. Khan, K. Zhang, T. Luo, K. Zhu, and L. Hu. 2021. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Industrial Crops and Products 171:113878. doi: 10.1016/j.indcrop.2021.113878.
  • Khatun, M., S. Sarkar, F. M. Era, A. K. M. M. Islam, M. P. Anwar, S. Fahad, R. Datta, and A. K. M. A. Islam. 2021. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy 11 (12):2374–35. doi: 10.3390/agronomy11122374.
  • Khodabin, G., Z. Tahmasebi-Sarvestani, A. H. S. Rad, S. A. M. Modarres-Sanavy, S. M. Hashemi, and E. Bakhshandeh. 2021. Effect of late-season drought stress and foliar application of ZnSO4 and MnSO4 on the yield and some oil characteristics of rapeseed cultivars. Journal of Soil Science and Plant Nutrition 21 (3):1904–16. doi: 10.1007/s42729-021-00489-x.
  • Khodadadi, S., M. A. Chegini, A. Soltani, H. Ajam Norouzi, and S. Sadeghzadeh Hemayati. 2020. Influence of foliar-applied humic acid and some key growth regulators on sugar beet (Beta vulgaris L.) under drought stress: Antioxidant defense system, photosynthetic characteristics and sugar yield. Sugar Tech 22 (5):765–72. doi: 10.1007/s12355-020-00839-6.
  • Kholova, J., C. T. Hash, P. L. Kumar, R. S. Yadav, M. Kočová, and V. Vadez. 2010. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. Journal of Experimental Botany 61 (5):1431–40. doi: 10.1093/jxb/erq013.
  • Kiani, S. P., P. Maury, A. Sarrafi, and P. Grieu. 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Science 175 (4):565–73. doi: 10.1016/j.plantsci.2008.06.002.
  • Kirova, E., D. Pecheva, and L. Simova-Stoilova. 2021. Drought response in winter wheat: Protection from oxidative stress and mutagenesis effect. Acta Physiologiae Plantarum 43 (1):1–11. doi: 10.1007/s11738-020-03182-1.
  • Kobierski, M., J. Lemanowicz, P. Wojewódzki, and K. Kondratowicz-Maciejewska. 2020. The effect of organic and conventional farming systems with different tillage on soil properties and enzymatic activity. Agronomy 10 (11):1809–13. doi: 10.3390/agronomy10111809.
  • Konôpka, B., K. Noguchi, T. Sakata, M. Takahashi, and Z. Konôpková. 2007. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain, eastern Japan. Journal of Forest Research 12 (2):143–51. doi: 10.1007/s10310-006-0257-0.
  • Kudoyarova, G. R., I. C. Dodd, D. S. Veselov, S. A. Rothwell, and S. Y. Veselov. 2015. Common and specific responses to availability of mineral nutrients and water. Journal of Experimental Botany 66 (8):2133–44. doi: 10.1093/jxb/erv017.
  • Kühling, I., D. Redozubov, G. Broll, and D. Trautz. 2017. Impact of tillage, seeding rate and seeding depth on soil moisture and dryland spring wheat yield in Western Siberia. Soil and Tillage Research 170:43–52. doi: 10.1016/j.still.2017.02.009.
  • Latif, F., F. Ullah, S. Mehmood, A. Khattak, A. U. Khan, S. Khan, and I. Husain. 2016. Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agriculturae Scandinavica, Section B—Soil and Plant Science 66 (4):325–32. doi: 10.1080/09064710.2015.1117133.
  • Lazicki, P. A., M. Liebman, and M. M. Wander. 2016. Root parameters show how management alters resource distribution and soil quality in conventional and low-input cropping systems in Central Iowa. PLoS One 11 (10):e0164209. doi: 10.1371/journal.pone.0164209.
  • Lehmann, J. 2007. Bio‐energy in the black. Frontiers in Ecology and the Environment 5 (7):381–7. doi: 10.1890/1540-9295(2007)5[381:BITB.2.0.CO;2]
  • Lehmann, P., and D. Or. 2015. Effects of stomata clustering on leaf gas exchange. The New Phytologist 207 (4):1015–25. doi: 10.1111/nph.13442.
  • Li, S., L. Zhou, S. D. Addo-Danso, G. Ding, M. Sun, S. Wu, and S. Lin. 2020. Nitrogen supply enhances the physiological resistance of Chinese fir plantlets under polyethylene glycol (PEG)-induced drought stress. Scientific Reports 10 (1):1–8. doi: 10.1038/s41598-020-64161-7.
  • Li, X., and F. Liu. 2016. Drought stress memory and drought stress tolerance in plants: Biochemical and molecular basis. In Drought stress tolerance in plants, ed. M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt, and L. S. Tran, 17–44. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-28899-4_2.
  • Lilley, J. M., and M. M. Ludlow. 1996. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Research 48 (2-3):185–97. doi: 10.1016/S0378-4290(96)00045-7.
  • Lisar, S. Y. S., R. Motafakkerazad, and M. M. Hossain. 2012. Water stress in plants: Causes, effects and responses. In Water stress, ed. I. Md, M. Rahman, and H. Hiroshi, 1–14. Rijeka Croatia: InTeck.
  • Liu, J., H. Zhao, Y. Ren, X. Zhang, and Y. Wang. 2009. Change of osmotica in oat leaf under soil moisture stress. Acta Botanica Boreali-Occidentalia Sinica 29 (7):1432–146.
  • Liu, K., J. M. Baskin, C. C. Baskin, and G. Du. 2013. Very fast-germinating seeds of desert species are cryptoviparous-like. Seed Science Research 23 (3):163–7. doi: 10.1017/S0960258513000135.
  • Lotfi, R., H. M. Kalaji, G. R. Valizadeh, E. Behrozyar, A. Hemati, P. Gharavi-Kochebagh, and A. Ghassemi. 2018. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica 56 (3):962–70. doi: 10.1007/s11099-017-0745-9.
  • Lotfi, R., M. Pessarakli, P. Gharavi-Kouchebagh, and H. Khoshvaghti. 2015. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. The Crop Journal 3 (5):434–9. doi: 10.1016/j.cj.2015.05.006.
  • Ma, D., D. Sun, C. Wang, H. Ding, H. Qin, J. Hou, X. Huang, Y. Xie, and T. Guo. 2017. Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science 8:860–12. doi: 10.3389/fpls.2017.00860.
  • Ma, X., J. Zheng, X. Zhang, Q. Hu, and R. Qian. 2017. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Frontiers in Plant Science 8:600. doi: 10.3389/fpls.2017.00600.
  • Mafakheri, A., A. F. Siosemardeh, B. Bahramnejad, P. C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4 (8):580–5.
  • Mahama, S. 2018. The effect of drought and cropping system on the yield and yield components of maize (Zea mays L.). Acta Agraria Debreceniensis 2017 (75):51–3. doi: 10.34101/actaagrar/75/1645.
  • Maleki, A., A. Naderi, R. Naseri, A. Fathi, S. Bahamin, and R. Maleki. 2013. Physiological performance of soybean cultivars under drought stress. Bulletin of Environment, Pharmacology and Life Sciences 2 (6):38–44.
  • Markesteijn, L., and L. Poorter. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought‐and shade‐tolerance. Journal of Ecology 97 (2):311–25. doi: 10.1111/j.1365-2745.2008.01466.x.
  • Masoudi-Sadaghiani, F., A. M. Babak, M. R. Zardoshti, R.-S. M. Hassan, and A. Tavakoli. 2011. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Australian Journal of Crop Science 5 (1):55–60.
  • Mathur, S., R. S. Tomar, and A. Jajoo. 2019. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research 139 (1-3):227–38. doi: 10.1007/s11120-018-0538-4.
  • Maurel, C., and P. Nacry. 2020. Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants 6 (7):744–9. doi: 10.1038/s41477-020-0684-5.
  • Meeteren, U. V., and S. Aliniaeifard. 2016. Stomata and postharvest physiology postharvest ripening physiology of crops. In Postharvest ripening physiology of crops, ed. S. Pareek, 157–91. London, UK: CRC Press, Taylor and Francis Group.
  • Meganid, A. S., H. S. Al-Zahrani, and M. S. El-Metwally. 2015. Effect of humic acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. International Journal of Innovative Research in Science, Engineering and Technology 4 (5):2651–60.
  • Minasny, B., and A. B. McBratney. 2018. Limited effect of organic matter on soil available water capacity. European Journal of Soil Science 69 (1):39–47. doi: 10.1111/ejss.12475.
  • Mishra, A. K., and V. P. Singh. 2011. Drought modeling–A review. Journal of Hydrology 403 (1-2):157–75. doi: 10.1016/j.jhydrol.2011.03.049.
  • Mishra, B., and L. L. Srivastava. 1988. Physiological properties of has isolated from major soil associations of Bihar. Soil Science 36:1–89.
  • Mitchell, J. H., D. Siamhan, M. H. Wamala, J. B. Risimeri, E. Chinyamakobvu, S. A. Henderson, and S. Fukai. 1998. The use of seedling leaf death score for evaluation of drought resistance of rice. Field Crops Research 55 (1-2):129–39. doi: 10.1016/S0378-4290(97)00074-9.
  • Mittler, R., S. Vanderauwera, N. Suzuki, G. Miller, V. B. Tognetti, K. Vandepoele, M. Gollery, V. Shulaev, and F. Van Breusegem. 2011. ROS signaling: The new wave? Trends in Plant Science 16 (6):300–9. doi: 10.1016/j.tplants.2011.03.007.
  • Miyashita, K., S. Tanakamaru, T. Maitani, and K. Kimura. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany 53 (2):205–14. doi: 10.1016/j.envexpbot.2004.03.015.
  • Mndolwa, E. J. 2017. Low soil fertility and drought stress tolerance in selected Andean common bean (Phaseolus vulgaris L.) genotypes. Doctoral diss., Washington State University, 215 p.
  • Mohammadi, M. H. S., N. Etemadi, M. M. Arab, M. Aalifar, M. Arab, and M. Pessarakli. 2017. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry 111:129–43.
  • Moll, R. H., E. J. Kamprath, and W. A. Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agronomy Journal 74 (3):562–4. doi: 10.2134/agronj1982.00021962007400030037x.
  • Momen, A., A. Koocheki, and M. M. NASSIRI. 2018. Nutrient efficiency index of maize in response to varying rates of nitrogen and phosphorus fertilizers under different irrigation water regimes. Applied Field Crops Research 31 (1.118):52–77.
  • Mosanaei, H., H. Ajamnorozi, M. R. Dadashi, A. Faraji, and M. Pessarakli. 2017. Improvement effect of nitrogen fertilizer and plant density on wheat (Triticum aestivum L.) seed deterioration and yield. Emirates Journal of Food and Agriculture 29 (11):899–910. doi: 10.9755/ejfa.2017.v29.i11.1500.
  • Mukhtar, I., M. A. Shahid, M. W. Khan, R. M. Balal, M. M. Iqbal, T. Naz, M. Zubair, and H. H. Ali. 2016. Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil and Environment 35 (1):56–64.
  • Munsif, F., U. Farooq, M. Arif, T. Shah, M. Jehangir, S. Zaheer, K. Akhtar, M. S. Khan, I. Ahmad, W. Ahmad, et al. 2022. Potassium and salicylic acid function synergistically to promote the drought resilience through upregulation of antioxidant profile for enhancing potassium use efficiency and wheat yield. Annals of Applied Biology 180 (2):273–82. doi: 10.1111/aab.12731.
  • Muscolo, A., M. Sidari, E. Attinà, O. Francioso, V. Tugnoli, and S. Nardi. 2007. Biological activity of humic substances is related to their chemical structure. Soil Science Society of America Journal 71 (1):75–85. doi: 10.2136/sssaj2006.0055.
  • Nadeem, M., J. Li, M. Yahya, A. Sher, C. Ma, X. Wang, and L. Qiu. 2019. Research progress and perspective on drought stress in legumes: A review. International Journal of Molecular Sciences 20 (10):2541. doi: 10.3390/ijms20102541.
  • Najafi, S., H. Nazari Nasi, R. Tuncturk, M. Tuncturk, R. Z. Sayyed, and R. Amirnia. 2021. Biofertilizer application enhances drought stress tolerance and alters the antioxidant enzymes in medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturae 7 (12):588. doi: 10.3390/horticulturae7120588.
  • Nam, N. H., Y. S. Chauhan, and C. Johansen. 2001. Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. The Journal of Agricultural Science 136 (2):179–89. doi: 10.1017/S0021859601008607.
  • Nandan, R., S. S. Singh, V. Kumar, V. Singh, K. K. Hazra, C. P. Nath, R. K. Malik, S. P. Poonia, and C. H. Solanki. 2018. Crop establishment with conservation tillage and crop residue retention in rice-based cropping systems of Eastern India: Yield advantage and economic benefit. Paddy and Water Environment 16 (3):477–92. doi: 10.1007/s10333-018-0641-3.
  • Noctor, G., J. P. Reichheld, and C. H. Foyer. 2018. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology 80:3–12. 10.1016/j.semcdb.2017.07.013.
  • Nonami, H. 1998. Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research 111 (3):373–82. doi: 10.1007/BF02507801.
  • Novak, J., G. Sigua, D. Watts, K. Cantrell, P. Shumaker, A. Szogi, M. G. Johnson, and K. Spokas. 2016. Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere 142:160–7. doi: 10.1016/j.chemosphere.2015.06.038.
  • Ojuederie, O. B., O. S. Olanrewaju, and O. O. Babalola. 2019. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy 9 (11):712. doi: 10.3390/agronomy9110712.
  • Okçu, G., M. D. Kaya, and M. Atak. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry 29 (4):237–42.
  • Ouvrard, O., F. Cellier, K. Ferrare, D. Tousch, T. Lamaze, J.-M. Dupuis, and F. Casse-Delbart. 1996. Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Molecular Biology 31 (4):819–29. doi: 10.1007/BF00019469.
  • Parent, B., B. Suard, R. Serraj, and F. Tardieu. 2010. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant, Cell & Environment 33 (8):1256–67. doi: 10.1111/j.1365-3040.2010.02145.x[PMC][20302604.x
  • Paul, P. L. C., R. W. Bell, E. G. Barrett-Lennard, and E. Kabir. 2020. Variation in the yield of sunflower (Helianthus annuus L.) due to differing tillage systems is associated with variation in solute potential of the soil solution in a salt-affected coastal region of the Ganges Delta. Soil and Tillage Research 197:104489. doi: 10.1016/j.still.2019.104489.
  • Peng, Z., L. Wang, J. Xie, L. Li, J. A. Coulter, R. Zhang, Z. Luo, J. Kholova, and S. Choudhary. 2019. Conservation tillage increases water use efficiency of spring wheat by optimizing water transfer in a semi-arid environment. Agronomy 9 (10):583. doi: 10.3390/agronomy9100583.
  • Pessarakli, M, and K. B. Marcum. 2013. Distichlis spicata—A salt-and drought-tolerant plant species with minimum water requirements for sustainable agriculture in desert regions and biological reclamation of desert saline soils. In Developments in soil salinity assessment and reclamation, innovative thinking and use of marginal soil and water resources in irrigated agriculture, ed. F. K. Taha, S. A. Shahid, and M. A. Abdelfattah, 383–96. Dubai, UAE: International Center for Bio-saline Agriculture. doi: 10.1007/978-94-007-5684-7_26.© Springer Science & Business Media Dordrecht 2013.
  • Pettigrew, W. T. 2004. Physiological consequences of moisture deficit stress in cotton. Crop Science 44 (4):1265–72. doi: 10.2135/cropsci2004.1265.
  • Peuke, A. D., A. Gessler, and H. Rennenberg. 2006. The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant, Cell & Environment 29 (5):823–35. doi: 10.1111/j.1365-3040.2005.01452.x.
  • Pirasteh-Anosheh, H., A. Saed-Moucheshi, H. Pakniyat, and M. Pessarakli. 2016. Stomatal responses to drought stress. In Water stress and crop plants: A sustainable approach, ed. P. Ahmad, 1–2. Hoboken, NJ: John Wiley and Sons, Ltd.
  • Piro, G., M. R. Leucci, K. Waldron, and G. Dalessandro. 2003. Exposure to water stress causes changes in the biosynthesis of cell wall polysaccharides in roots of wheat cultivars varying in drought tolerance. Plant Science 165 (3):559–69. doi: 10.1016/S0168-9452(03)00215-2.
  • Poorter, H., and P. Ryser. 2015. The limits to leaf and root plasticity: What is so special about specific root length? The New Phytologist 206 (4):1188–90. doi: 10.1111/nph.13438.
  • Power, J. F., R. Wiese, and D. Flowerday. 2000. Managing nitrogen for water quality—Lessons from management systems evaluation area. Journal of Environmental Quality 29 (2):355–66. doi: 10.2134/jeq2000.00472425002900020001x.
  • Preciado-Rangel, P., J. J. Reyes-Pérez, S. C. Ramírez-Rodríguez, L. Salas-Pérez, M. Fortis-Hernández, B. Murillo-Amador, and E. Troyo-Diéguez. 2019. Foliar aspersion of salicylic acid improves phenolic and flavonoid compounds, and also the fruit yield in cucumber (Cucumis sativus L.). Plants 8 (2):44. doi: 10.3390/plants8020044.
  • Ramezani, M., R. R. Soukht Abandani, H. R. Mobasser, and E. Amiri. 2011. Effects of row spacing and plant density on silage yield of corn (Zea mays L.cv.sc704) in two plant pattern in North of Iran. African Journal of Agricultural Research 6 (5):1128–33.
  • Rao, K. V. M., A. S. Raghavendra, and K. J. Reddy, eds. 2006. Physiology and molecular biology of stress tolerance in plants, 355. Dordrecht, The Netherlands: Springer Science and Business Media.
  • Rashid, K., M. Akhtar, K. L. Cheema, I. Rasool, A. Zahid, A. Hussain, M. Aqeel, S. A. Anwar, et al. 2021. Development of selection criteria for assessment of chickpea (Cicer Arientum L.) on physio-morphic attributes under drought stress at seedling stage and maturity. Plant Cell Biotechnology and Molecular Biology 22 (3&4):98–109.
  • Rashwan, B. R. A., R. M. Abd-El Raouf, N. R. Ahmed, and H. Ferweez. 2017. Efficacy of K-humate, compost and biofertilizer application as well as cutting number on yield and quality of Stevia (Stevia rebaudiana Bertoni) as natural sweetener. Assiut Journal of Agricultural Sciences 48:251–68. doi: 10.21608/ajas.2016.3745.
  • Ren, A.-T., Y. Zhu, Y.-L. Chen, H.-X. Ren, J.-Y. Li, L. K. Abbott, and Y.-C. Xiong. 2019. Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings. Environmental and Experimental Botany 167:103824. doi: 10.1016/j.envexpbot.2019.103824.
  • Reynolds, W. D., C. F. Drury, X. M. Yang, C. S. Tan, and J. Y. Yang. 2014. Impacts of 48 years of consistent cropping, fertilization and land management on the physical quality of a clay loam soil. Canadian Journal of Soil Science 94 (3):403–19. doi: 10.4141/cjss2013-097.
  • Riasat, M., S. Kiani, A. Saed-Mouchehsi, and M. Pessarakli. 2019. Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. Journal of Plant Nutrition 42 (2):111–26. doi: 10.1080/01904167.2018.1549675.
  • Ricaurte, J., J. A. Clavijo Michelangeli, T. R. Sinclair, I. M. Rao, and S. E. Beebe. 2016. Sowing density effect on common bean leaf area development. Crop Science 56 (5):2713–21. doi: 10.2135/cropsci2016.01.0056.
  • Richards, R. A. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51 (suppl_1):447–58. doi: 10.1093/jexbot/51.suppl_1.447.
  • Rosero, A., L. Granda, J. A. Berdugo-Cely, O. Šamajová, J. Šamaj, and R. Cerkal. 2020. A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency. Plants 9 (10):1263. doi: 10.3390/plants9101263.
  • Rupiasih, N. N., M. Sumadiyasa, and A. A. Ratnawati. 2013. Study of the removal of humic acid, organic pollutant by water hyacinth plant from aquatic environment and its effect on pH, chlorophyll content and degradation. Asian Journal of Water, Environment and Pollution 10 (3):1–9.
  • Rupiasih, N. N., M. Sumadiyasa, A. A. Ratnawati, G. V. Subbarao, Y. S. Chauhan, C. Johansen, A. S. Meganid, and H. S. Al-Zahrani. 2020. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Journal of Nuts 11 (3):1–89. doi: 10.1007/s11099-017-0745-9.
  • Rydlova, J., and D. Püschel. 2020. Arbuscular mycorrhiza, but not hydrogel, alleviates drought stress of ornamental plants in peat-based substrate. Applied Soil Ecology 146:103394. doi: 10.1016/j.apsoil.2019.103394.
  • Saeidnejad, A. H., M. Kafi, H. R. Khazaei, and M. Pessarakli. 2013. Effects of drought stress on quantitative and qualitative yield and antioxidative activity of Bunium persicum. Turkish Journal of BOTANY 37:930–9. doi: 10.3906/bot-1301-2.
  • Saeidnejad, A. H., M. Kafi, H. R. Khazaei, and M. Pessarakli. 2016. Combined effects of drought and UV stress on quantitative and qualitative properties of Bunium persicum. Journal of Essential Oil Bearing Plants 19 (7):1729–39. doi: 10.1080/0972060X.2016.1156032.
  • Salehi-Lisar, S. Y, and H. Bakhshayeshan-Agdam. 2016. Drought stress in plants: Causes, consequences, and tolerance. In Drought stress tolerance in plants, ed. M. A. Hossain, et al., 1–16. Cham, Switzerland: Springer International Publishing.
  • Samarah, N. H. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development 25 (1):145–9. doi: 10.1051/agro:2004064.
  • Sanaullah, M., C. Rumpel, X. Charrier, and A. Chabbi. 2012. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant and Soil 352 (1-2):277–88. doi: 10.1007/s11104-011-0995-4.
  • Santos, R., M. Carvalho, E. Rosa, V. Carnide, and I. Castro. 2020. Root and agro-morphological traits performance in cowpea under drought stress. Agronomy 10 (10):1604. doi: 10.3390/agronomy10101604.
  • Sattar, A., X. Wang, T. Abbas, A. Sher, M. Ijaz, S. Ul-Allah, M. Irfan, M. Butt, M. A. Wahid, M. Cheema, et al. 2021. Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms. PLoS One 16 (10):e0256984. doi: 10.1371/journal.pone.0256984.
  • Saud, S., S. Fahad, C. Yajun, M. Z. Ihsan, H. M. Hammad, W. Nasim, M. Arif, and H. Alharby. 2017. Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. Frontiers in Plant Science 8:983–18. doi: 10.3389/fpls.2017.00983.
  • Scopel, E., B. Triomphe, F. Affholder, F. A. M. Da Silva, M. Corbeels, J. H. V. Xavier, R. Lahmar, S. Recous, M. Bernoux, E. Blanchart, et al. 2013. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development 33 (1):113–30. doi: 10.1007/s13593-012-0106-9.
  • Shah, Z. H., H. M. Rehman, T. Akhtar, I. Daur, M. A. Nawaz, M. Q. Ahmad, I. A. Rana, R. M. Atif, S. H. Yang, G. Chung, et al. 2017. Redox and ionic homeostasis regulations against oxidative, salinity and drought stress in wheat (a systems biology approach). Frontiers in Genetics 8 (141):141.
  • Shao, H.-B., L.-Y. Chu, C. A. Jaleel, and C.-X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331 (3):215–25. doi: 10.1016/j.crvi.2008.01.002.
  • Sharp, R. G., M. A. Else, R. W. Cameron, and W. J. Davies. 2009. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Scientia Horticulturae 120 (4):511–7. doi: 10.1016/j.scienta.2008.12.008.
  • Shavrukov, Y., A. Kurishbayev, S. Jatayev, V. Shvidchenko, L. Zotova, F. Koekemoer, S. de Groot, K. Soole, and P. Langridge. 2017. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science 8:1950. doi: 10.3389/fpls.2017.01950.
  • Shen, J., M. Guo, Y. Wang, X. Yuan, Y. Wen, X. Song, S. Dong, and P. Guo. 2020. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signaling & Behavior 15 (8):1774212. doi: 10.1080/15592324.2020.1774212.
  • Sher, A., M. Y. Arfat, S. Ul-Allah, A. Sattar, M. Ijaz, A. Manaf, A. Qayyum, A. T. K. Zuan, O. Nasif, K. Gasparovic, et al. 2021. Conservation tillage improves productivity of sunflower (Helianthus annuus L.) under reduced irrigation on sandy loam soil. PloS One 16 (12):e0260673. doi: 10.1371/journal.pone.0260673.
  • Shi, Q., X. Zeng, M. Li, X. Tan, and F. Xu. 2002. Effects of different water management practices on rice growth. Water-Wise Rice Production 1:3–14.
  • Shiade, S. R. G, and B. Boelt. 2020. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 70 (6):475–94. doi: 10.1080/09064710.2020.1779338.
  • Shirazi, M., M. Khan, and M. Arif. 2019. Effects of peg induced water stress on growth and physiological responses of rice genotypes at seedling stage. Pakistan Journal of Botany 51 (6):2013–21.
  • Siddique, K. H. M., K. L. Regan, D. Tennant, and B. D. Thomson. 2001. Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. European Journal of Agronomy 15 (4):267–80. doi: 10.1016/S1161-0301(01)00106-X.
  • Siddique, M. R. B., A. Hamid, and M. S. Islam. 2000. Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica 41:35–9.
  • Sikder, S., Y. Qiao, D. Baodi, C. Shi, and M. Liu. 2016. Effect of water stress on leaf level gas exchange capacity and water-use efficiency of wheat cultivars. Indian Journal of Plant Physiology 21 (3):300–5. doi: 10.1007/s40502-016-0238-z.
  • Singh, M., R. K. Saini, S. Singh, and S. P. Sharma. 2019. Potential of integrating biochar and deficit irrigation strategies for sustaining vegetable production in water-limited regions: A review. HortScience 54 (11):1872–8. doi: 10.21273/HORTSCI14271-19.
  • Singh, S., A. K. Gupta, and N. Kaur. 2012. Differential responses of antioxidative defence system to long‐term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. Journal of Agronomy and Crop Science 198 (3):185–95. doi: 10.1111/j.1439-037X.2011.00497.x.
  • Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Advances in Agronomy 105:47–82.
  • Souza, A. C., D. B. Zandonadi, M. P. Santos, N. O. A. Canellas, C. de Paula Soares, L. E. S. da Silva Irineu, C. E. de Rezende, R. Spaccini, A. Piccolo, F. L. Olivares, et al. 2021. Acclimation with humic acids enhances maize and tomato tolerance to salinity. Chemical and Biological Technologies in Agriculture 8 (1):1–13. doi: 10.1186/s40538-021-00239-2.
  • Srikanth, B., K. Jayalalitha, and M. S. Rekha. 2021. Zinc induced variations in dry matter production, partitioning and yield of mungbean (Vigna radiata L.) under water stress. Current Journal of Applied Science and Technology 40 (8):41–52. doi: 10.9734/cjast/2021/v40i831338.
  • Studer, C., Y. Hu, and U. Schmidhalter. 2017. Interactive effects of N-, P- and K-nutrition and drought stress on the development of maize seedlings. Agriculture 7 (11):90–12. doi: 10.3390/agriculture7110090.
  • Subbarao, G. V., Y. S. Chauhan, and C. Johansen. 2000. Patterns of osmotic adjustment in pigeonpea—Its importance as a mechanism of drought resistance. European Journal of Agronomy 12 (3-4):239–49. doi: 10.1016/S1161-0301(00)00050-2.
  • Tadayyon, A., P. Nikneshan, and M. Pessarakli. 2018. Effects of drought stress on concentration of macro- and micro-nutrients in Castor (Ricinus communis L.) plant. Journal of Plant Nutrition 41 (3):304–10. doi: 10.1080/01904167.2017.1381126.
  • Taghavi Ghasemkheili, F., F. Ekelund, J. L. Johansen, H. Pirdashti, S. R. Ghadirnezhad Shiade, A. Fathi, and R. Kjøller. 2022. Ameliorative effects of Trichoderma harzianum and rhizosphere soil microbes on cadmium biosorption of barley (Hordeum vulgare L.) in Cd-polluted soil. Journal of Soil Science and Plant Nutrition 22 (1):527–13. doi: 10.1007/s42729-021-00666-y.
  • Taheri, F., A. Maleki, and A. Fathi. 2021. Study of different levels of nitrogen fertilizer and irrigation on quantitative and qualitative characteristics of Quinoa grain yield. Crop Physiology Journal 13 (50):135–49.
  • Tahkokorpi, M., K. Taulavuori, K. Laine, and E. Taulavuori. 2007. After-effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environmental and Experimental Botany 61 (1):85–93. doi: 10.1016/j.envexpbot.2007.03.003.
  • Tamindžić, G., M. Ignjatov, D. Milošević, Z. Nikolić, L. K. Kravljanac, D. Jovičić, Ž. Dolijanović, and J. Savić. 2021. Seed priming with zinc improves field performance of maize hybrids grown on calcareous chernozem. Italian Journal of Agronomy 16 (3):1795. doi: 10.4081/ija.2021.1795.
  • Tang, A., Y. Kawamitsu, M. Kanechi, and J. S. Boyer. 2002. Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Annals of Botany 89 (7):861–70. doi: 10.1093/aob/mcf081.
  • Tardieu, F., B. Parent, and T. Simonneau. 2010. Control of leaf growth by abscisic acid: Hydraulic or non‐hydraulic processes? Plant, Cell & Environment 33 (4):636–47. doi.org/ doi: 10.1111/j.1365-3040.2009.02091.x.
  • Teymoori, M., M. R. Ardakani, A. H. S. Rad, M. Alavifazel, and P. N. Manavi. 2020. Seed yield and physiological responses to deal with drought stress and late sowing date for promising lines of rapeseed (Brassica napus L). International Agrophysics 34 (3):321–31. doi: 10.31545/intagr/124388.
  • Tian, J., F. Jiang, and Z. Wu. 2015. The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro. Plant Cell, Tissue and Organ Culture 120 (2):571–84. doi.org/ doi: 10.1007/s11240-014-0623-0.
  • Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418 (6898):671–7. doi.org/ doi: 10.1038/nature01014.
  • Trubat, R., J. Cortina, and A. Vilagrosa. 2012. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia 170 (4):899–908. doi.org/ doi: 10.1007/s00442-012-2380-2.
  • Tyagi, J., N. Shrivastava, A. K. Sharma, A. Varma, R. N. Pudake, J. Tyagi, N. E. Way, N. Shrivastava, et al. 2018. Mycorrhiza fungus Rhizophagus intraradices mediates drought tolerance in Eleusine coracana seedlings. Preprints 2018:2018050064. doi: 10.20944/preprints201805.0064.v1.
  • Ulemale, C. S., S. N. Mate, and D. V. Deshmukh. 2013. Physiological indices for drought tolerance in chickpea (Cicer arietinum L.). World Journal of Agricultural Sciences 9 (2):123–31.
  • Umami, M., L. M. Parker, and S. K. Arndt. 2021. The impacts of drought stress and Phytophthora cinnamomi infection on short-term water relations in two year-old Eucalyptus obliqua. Forests 12 (2):109. doi.org/ doi: 10.3390/f12020109.
  • Vadez, V., O. Halilou, H. M. Hissene, P. Sibiry-Traore, T. R. Sinclair, and A. Soltani. 2017. Mapping water stress incidence and intensity, optimal plant populations, and cultivar duration for African groundnut productivity enhancement. Frontiers in Plant Science 8:432. doi.org/ doi: 10.3389/fpls.2017.00432.
  • Vaisnad, S, and R. Talebi. 2015. Salicylic acid-enhanced morphological and physiological responses in chickpea (Cicer arietinum) under water deficit stress. Environmental and Experimental Biology 13 (3):109–15.
  • Valizadeh, F. F., T. A. Rehani, N. Najafi, and S. Oustan. 2012. Effects of combined application of Cd and Zn on the growth characteristics of rice plant and zinc, cadmium, iron and manganese concentration in soil under flooded vs. nonflooded conditions. Iranian Journal of Soil and Water Research 43 (3):195–205.
  • Varga, B., E. Varga-László, S. Bencze, K. Balla, and O. Veisz. 2013. Water use of winter cereals under well-watered and drought-stressed conditions. Plant, Soil and Environment 59 (4):150–5. doi: 10.17221/658/2012-PSE.
  • Varga, B., G. Vida, E. Varga‐László, S. Bencze, and O. Veisz. 2015. Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. Journal of Agronomy and Crop Science 201 (1):1–9. doi.org/ doi: 10.1111/jac.12087.
  • Wang, D., J. A. Poss, T. J. Donovan, M. C. Shannon, and S. M. Lesch. 2002. Biophysical properties and biomass production of elephant grass under saline conditions. Journal of Arid Environments 52 (4):447–56. doi: 10.1006/jare.2002.1016.
  • Waraich, E. A., R. Ahmad, and M. Y. Ashraf. 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science 5 (6):764–77.
  • Waraich, E. A., R. Ahmad, M. Y. Ashraf, and M. Ahmad. 2011. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science 61 (4):291–304. doi.org/ doi: 10.1080/09064710.2010.491954.
  • Wopereis, M. C. S., M. J. Kropff, A. R. Maligaya, and T. P. Tuong. 1996. Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Research 46 (1-3):21–39. doi.org/ doi: 10.1016/0378-4290(95)00084-4.
  • Wu, F. Z., W. K. Bao, Z. Q. Zhou, and N. Wu. 2009. Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in response to nitrogen supply and water stress. Journal of Arid Environments 73 (12):1067–73. doi.org/ doi: 10.1016/j.jaridenv.2009.06.007.
  • Wu, Q.-S, and Y.-N. Zou. 2017. Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In Arbuscular mycorrhizas and stress tolerance of plants, ed. Q.-S. Wu, 25–41. Singapore: Springer. doi.org/ doi: 10.1007/978-981-10-4115-0_2.
  • Xu, D.-Q, and Y.-K. Shen. 2001. Photosynthetic efficiency and crop yield. In Handbook of plant and crop physiology, ed. M. Pessarakli, 2nd ed., 843–56. Boca Raton, FL: CRC Press, Taylor and Francis Publishing Group.
  • Yadav, V., P. Kumar, and M. Goyal. 2018. Evaluation of genetic diversity in drought tolerant and sensitive varieties of wheat using ISSR markers. Electronic Journal of Plant Breeding 9 (1):146–53. doi: 10.5958/0975-928X.2018.00017.0.
  • Yamauchi, A., J. R. Pardales, Jr., and Y. Kono. 1994. Root system structure and its relation to stress tolerance. In Roots and nitrogen in cropping systems of the semi-arid tropics. Patancheru, Andhra Pradesh, India, ed. O. Ito, C. Johansen, J. J. Adu-Gyamfi, K. Katayama, J. V. D. K. Kumar Rao, and T. J. Rego, 11–33. Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.
  • Yang, A., S. S. Akhtar, L. Li, Q. Fu, Q. Li, M. A. Naeem, X. He, Z. Zhang, and S.-E. Jacobsen. 2020. Biochar mitigates combined effects of drought and salinity stress in Quinoa. Agronomy 10 (6):912. doi: 10.3390/agronomy10060912.
  • Yang, Z., Y. Cao, J. Zhao, B. Zhou, X. Ge, Q. Li, and M. Li. 2020. Root response of moso bamboo (Phyllostachys Edulis (Carrière) J. Houz.) seedlings to drought with different intensities and durations. Forests 12 (1):50. doi.org/ doi: 10.3390/f12010050.
  • Yavas, I., and A. Unay. 2016. Effects of zinc and salicylic acid on wheat under drought stress. Journal of Animal and Plant Sciences 26 (4):1012–101.
  • Zafar, Z., F. Rasheed, R. M. Atif, M. A. Javed, M. Maqsood, and O. Gailing. 2021. Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoides L. saplings: Evidence from morphological, physiological and biochemical changes. Plants 10 (6):1242. doi: 10.3390/plants10061242.
  • Zaheer, M. S., H. H. Ali, W. Soufan, R. Iqbal, M. Habib-ur-Rahman, J. Iqbal, M. Israr, and A. E. Sabagh. 2021. Potential effects of biochar application for improving wheat (Triticum aestivum L.) growth and soil biochemical properties under drought stress conditions. Land 10 (11):1125. doi.org/ doi: 10.3390/land10111125.
  • Zamani, A., M. Karimi, A. Abbasi-Surki, and F. Direkvand-moghadam. 2021. The Effect of humic acid application on Stevia (Stevia rebaudiana) growth and metabolites under drought stress. Iranian Journal of Plant Physiology 11 (3):3651–8.
  • Zeid, I. M., and Z. A. Shedeed. 2006. Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum 50 (4):635–40. doi.org/ doi: 10.1007/s10535-006-0099-9.
  • Zhang, F., P. Wang, Y.-N. Zou, Q.-S. Wu, and K. Kuča. 2019. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science 65 (9):1316–30. doi.org/ doi: 10.1080/03650340.2018.1563780.
  • Zhang, J., A. S. Mason, J. Wu, S. Liu, X. Zhang, T. Luo, R. Redden, J. Batley, L. Hu, G. Yan, et al. 2015. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science 6:1058. doi.org/ doi: 10.3389/fpls.2015.01058.
  • Zhu, B., Q. Xu, Y. Zou, S. Ma, X. Zhang, X. Xie, and L. Wang. 2020. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regulation 90 (3):455–66. doi.org/ doi: 10.1007/s10725-019-00545-8.
  • Zhu, G., L. Gu, Y. Shi, H. Chen, Y. Liu, F. Lu, Z. Ren, Y. Wang, H. Lu, A. Tabassum, et al. 2021. Plant hydraulic conductivity determines photosynthesis in rice under PEG-induced drought stress. Pakistan Journal of Botany 53 (2):409–17. doi: 10.30848/PJB2021-2(14).
  • Zhu, J.-K. 2016. Abiotic stress signaling and responses in plants. Cell 167 (2):313–24. doi.org/ doi: 10.1016/j.cell.2016.08.029.
  • Zhu, X., B. Chen, L. Zhu, and B. Xing. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution (Barking, Essex : 1987) 227:98–115. doi.org/ doi: 10.1016/j.envpol.2017.04.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.