1,809
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Silicon supplementation induces expression of a histidine-rich defensin gene family in Nicotiana tabacum

, , , &
Pages 2003-2015 | Received 07 Jun 2022, Accepted 19 Jul 2022, Published online: 15 Aug 2022

References

  • Adrees, M., S. Ali, M. Rizwan, M. Zia-Ur-Rehman, M. Ibrahim, F. Abbas, M. Farid, M. F. Qayyum, and M. K. Irshad. 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety 119:186–97. doi:10.1016/j.ecoenv.2015.05.011.
  • Andrade, C. C. L., R. S. Resende, F. Á. Rodrigues, G. H. M. Ferraz, W. R. Moreira, J. R. Oliveira, and R. L. R. Mariano. 2013. Silicon reduces bacterial speck development on tomato leaves. Tropical Plant Pathology 38 (5):436–42. doi:10.1590/S1982-567620130050000021.
  • Ayana, G., C. Fininsa, S. Ahmed, and K. Wydra. 2011. Effects of soil amendment on bacterial wilt caused by Ralstonia solanacerum and tomato yields in Ethiopia. Journal of Plant Protection Research 51 (1):72–6. doi:10.2478/v10045-011-0015-0.
  • Bai, X., Z. Fu, Z. S. Stankovski, X. Wang, and X. Li. 2019. A three-dimensional threshold algorithm based on histogram reconstruction and dimensionality reduction for registering cucumber powdery mildew. Computers and Electronics in Agriculture 158:211–8. doi:10.1016/j.compag.2019.02.002.
  • Barberon, M., J. E. M. Vermeer, D. Bellis, P. Wang, S. Naseer, T. G. Andersen, B. M. Humbel, C. Nawrath, J. Takano, D. E. Salt, et al. 2016. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164 (3):447–59. doi:10.1016/j.cell.2015.12.021.
  • Bleackley, M. R., S. Vasa, P. J. Harvey, T. M. A. Shafee, B. K. Kerenga, T. P. Soares da Costa, D. J. Craik, R. G. T. Lowe, and M. A. Anderson. 2020. Histidine-rich defensins from the Solanaceae and Brassicaceae are antifungal and metal binding proteins. Journal of Fungi 6 (3):145. doi: 10.3390/jof6030145.
  • Broekaert, W. F., F. R. G. Terras, B. P. A. Cammue, and R. W. Osborn. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiology 108 (4):1353–8. doi:10.1104/pp.108.4.1353.
  • Brown, P. H., F.-J. Zhao, and A. Dobermann. 2021. What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition. Plant and Soil. doi:10.1007/s11104-021-05171-w.
  • Bücker-Neto, L., A. L. S. Paiva, R. D. Machado, R. A. Arenhart, and M. Margis-Pinheiro. 2017. Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology 40 (1 suppl 1):373–86. doi:10.1590/1678-4685-gmb-2016-0087.
  • Cannesan, M. A., C. Gangneux, A. Lanoue, D. Giron, K. Laval, M. Hawes, A. Driouich, and M. Vicre-Gibouin. 2011. Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. Annals of Botany 108 (3):459–69. doi: 10.1093/aob/mcr177.
  • de Carvalho, A. O., and V. M. Gomes. 2009. Plant defensins – Prospects for the biological functions and biotechnological properties. Peptides 30 (5):1007–20. doi:10.1016/j.peptides.2009.01.018.
  • Curlango-Rivera, G., and M. C. Hawes. 2011. Root tips moving through soil: An intrinsic vulnerability. Plant Signaling & Behavior 6 (5):726–7. doi:10.4161/psb.6.5.15107.
  • Debona, D., F. Á. Rodrigues, and L. E. Datnoff. 2017. Silicon’s role in abiotic and biotic plant stresses. Annual Review of Phytopathology 55:85–107. doi:10.1146/annurev-phyto-080516-035312.
  • Fleck, A. T., S. Schulze, M. Hinrichs, A. Specht, F. Waßmann, L. Schreiber, and M. K. Schenk. 2015. Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PloS One 10 (9):e0138555. doi:10.1371/journal.pone.0138555.
  • Flora, C., S. Khandekar, J. Boldt, and S. Leisner. 2019. Silicon alleviates long-term copper toxicity and influences gene expression in Nicotiana tabacum. Journal of Plant Nutrition 42 (8):864–78. doi:10.1080/01904167.2019.1589508.
  • Flora, C., S. Khandekar, J. Boldt, and S. Leisner. 2021. Silicon modulates expression of pathogen defense-related genes during alleviation of copper toxicity in Nicotiana tabacum. Journal of Plant Nutrition 44 (5):723–33. doi:10.1080/01904167.2020.1849296.
  • French-Monar, R. D., F. Á. Rodrigues, G. H. Korndorfer, and L. E. Datnoff. 2010. Silicon suppresses Phytophthora blight development on bell pepper. Journal of Phytopathology 158 (7–8):554–60. doi:10.1111/j.1439-0434.2009.01665.x.
  • Ganz, T. 2003. Defensins: Antimicrobial peptides of innate immunity. Nature Reviews: Immunology 3 (9):710–20. 10.1038/nri1180.
  • Gasteiger, E., A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31 (13):3784–8. doi:10.1093/nar/gkg563.
  • Giacomelli, L., V. Nanni, L. Lenzi, J. Zhuang, M. Dalla Serra, M. J. Banfield, C. D. Town, K. A. T. Silverstein, E. Baraldi, and C. Moser. 2012. Identification and characterization of the defensin-like gene family of grapevine. Molecular Plant-Microbe Interactions: MPMI 25 (8):1118–31. doi:10.1094/MPMI-12-11-0323.
  • Goswami, R. S., and H. C. Kistler. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology 5 (6):515–25. doi: 10.1111/j.1364-3703.2004.00252.x.
  • Hancock, R. E. W., and G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defenses. Trends in Microbiology 8 (9):402–10. doi:10.1016/S0966-842X(00)01823.
  • Hodson, M. J., P. J. White, A. Mead, and M. R. Broadley. 2005. Phylogenetic variation in the silicon composition of plants. Annals of Botany 96 (6):1027–46. doi:10.1093/aob/mci255.
  • Jain, A., S. Sarsaiya, Q. Wu, Y. Lu, and J. Shi. 2019. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10 (1):409–24. doi:10.1080/21655979.2019.1649520.
  • Jiang, N. H., and S. H. Zhang. 2021. Effects of combined application of potassium silicate and salicylic acid on the defense response of hydroponically grown tomato plants to Ralstonia solanacearum infection. Sustainability 13 (7):3750. doi:10.3390/su13073750.
  • Khandekar, S., and S. Leisner. 2011. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. Journal of Plant Physiology 168 (7):699–705. doi:10.1016/j.jplph/2010.09.009.
  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23 (21):2947–8. doi:10.1093/bioinformatics/btm404.
  • Lay, F., and M. Anderson. 2005. Defensins – Components of the innate immune system in plants. Current Protein and Peptide Science 6 (1):85–101. doi:10.2174/1389203053027575.
  • Li, J., S. M. Leisner, and J. Frantz. 2008. Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions. Journal of the American Society for Horticultural Science 133 (5):670–7. doi:10.21273/jashs.133.5.670.
  • Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–delta delta C(T)) method. Methods (San Diego, California) 25 (4):402–8. doi:10.1006/meth.2001.1262.
  • Mirouze, M., J. Sels, O. Richard, P. Czernic, S. Loubet, A. Jacquier, I. E. J. A. François, B. P. A. Cammue, M. Lebrun, P. Berthomieu, et al. 2006. A putative novel role for plant defensins: A defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. The Plant Journal: For Cell and Molecular Biology 47 (3):329–42. doi:10.1111/j.1365-313X.2006.02788.x.
  • Ochiai, A., K. Ogawa, M. Fukuda, M. Ohori, T. Kanaoka, T. Tanaka, M. Taniguchi, and Y. Sagehashi. 2018. Rice defensin OsAFP1 is a new drug candidate against human pathogenic fungi. Scientific Reports 8 (1):13. doi:10.1038/s41598-018-29715-w.
  • Odintsova, T. I., M. P. Slezina, and E. A. Istomina. 2020. Defensins of grasses: A systematic review. Biomolecules 10 (7):1029–40. doi:10.3390/biom10071029.
  • Parisi, K., T. M. A. Shafee, P. Quimbar, N. L. van der Weerden, M. R. Bleackley, and M. A. Anderson. 2019. The evolution, function, and mechanisms of action for plant defensins. Seminars in Cell and Developmental Biology 88:107–18. doi:10.1016/j.semcdb.2018.02.004.
  • R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, https://www.R-project.org/.
  • Rauser, W. E. 1999. Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin and metallothioneins. Cell Biochemistry & Biophysics 31 (1):19–48. doi:10.1007/BF02738153.
  • Schmidt, G. W., and S. K. Delaney. 2010. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics & Genomics: MGG 283 (3):233–41. doi:10.1007/s00438-010-0511-1.
  • Shafee, T., and M. A. Anderson. 2019. A quantitative map of protein sequence space for the cis-defensin superfamily. Bioinformatics (Oxford, England) 35 (5):743–52. doi:10.1093/bioinformatics/bty697.
  • Shafee, T. M. A., F. T. Lay, M. D. Hulett, and M. A. Anderson. 2016. The defensins consist of two independent, convergent protein superfamilies. Molecular Biology & Evolution 33 (9):2345–56. doi:10.1093/molbev/msw106.
  • Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3-New capabilities and interfaces. Nucleic Acids Research 40 (15):e115–12. doi:10.1093/nar/gks596.
  • Van Der Weerden, N. L., F. T. Lay, and M. A. Anderson. 2008. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. The Journal of Biological Chemistry 283 (21):14445–52. doi:10.1074/jbc.M709867200.
  • Vriens, K., B. P. A. Cammue, and K. Thevissen. 2014. Antifungal plant defensins: Mechanisms of action and production. Molecules (Basel, Switzerland) 19 (8):12280–303. doi:10.3390/molecules190812280.
  • Vriens, K., S. Peigneur, B. De Coninck, J. Tytgat, B. P. A. Cammue, and K. Thevissen. 2016. The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels. Scientific Reports 6 (1):32121. doi: 10.1038/srep32121.
  • Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, et al. 2018. SWISS-MODEL: Homology modeling of protein structures and complexes. Nucleic Acids Research 46 (W1):W296–W303. doi:10.1093/nar/gky427.
  • White, A. C., A. Rogers, M. Rees, and C. P. Osborne. 2016. How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany 67 (1):31–45. doi:10.1093/jxb/erv447.
  • Zellner, W., and L. E. Datnoff. 2020. Silicon as a biostimulant in agriculture. in Biostimulants for sustainable crop production, eds. Y. Rouphael, P. du Jardin, P. Brown, S. De Pascale, and G. Colla, pp. 149–95. Cambridge, UK: Burleigh Dodds Science Publishing. doi: 10.19103/AS.2020.0068.07..
  • Zellner, W. Z., B. Tubana, F. Á. Rodrigues, and L. Datnoff. 2021. Silicon’s role in plant stress reduction and why this element is not used routinely for managing plant health. Plant Disease 105 (8):2033–49. doi:10.1094/PDIS-08-20-1797-FE.
  • Zellner, W. Z., J. Frantz, and S. Leisner. 2011. Silicon delays Tobacco Ringspot Virus systemic symptoms in Nicotiana tabacum. Journal of Plant Physiology 168 (15):1866–9. doi:10.1016/j.jplph.2011.04.002.