486
Views
4
CrossRef citations to date
0
Altmetric
Research articles

Evaluating the comparative effects of acid modified rice husk and nano-silicon derived from rice husk on phosphorus use efficiency in wheat and lettuce plants with differing silicon contents

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2329-2341 | Received 29 Sep 2021, Accepted 21 Sep 2022, Published online: 12 Dec 2022

References

  • Abdi, F., Y. Niknezhad, H. Fallah, S. Dastan, and D. Barari Tari. 2021. Field trial evidence of silicon and phosphorus application to improve rice growth and nutrients uptake in Northern Iran. Journal of Plant Nutrition 44 (9):1268–86. doi: 10.1080/01904167.2020.1845384.
  • Adatia, M. H., and R. T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany 58 (3):343–51. doi: 10.1093/oxfordjournals.aob.a087212.
  • Alovisi, A. M. T., A. E. F. Neto, L. F. Carneiro, N. Curi, and A. A. Alovisi. 2014. Silicon-phosphorus interactions in soils cultivated with bean plants. Acta Scientiarum. Agronomy 36 (1):79–86. doi: 10.4025/actasciagron.v36i1.17240.
  • Aqaei, P., W. Weisany, M. Diyanat, J. Razmi, and P. C. Struik. 2020. Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. Journal of Plant Nutrition 43 (9):1205–16. doi: 10.1080/01904167.2020.1727508.
  • Ashkavand, P., M. Zarafshar, M. Tabari, J. Mirzaie, A. Nikpour, S. K. Bordbar, D. Struve, and G. G. Striker. 2018. Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica 53 (2):207–19. doi: 10.31055/1851.2372.v53.n2.20578.
  • Athinarayanan, J., V. S. Periasamy, M. Alhazmi, K. A. Alatiah, and A. A. Alshatwi. 2015. Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceramics International 41 (1):275–81. doi: 10.1016/j.ceramint.2014.08.069.
  • Avestan, S., M. Ghasemnezhad, M. Esfahani, and A. V. Barker. 2021. Effects of nanosilicon dioxide on leaf anatomy, chlorophyll fluorescence, and mineral element composition of strawberry under salinity stress. Journal of Plant Nutrition 44 (20):3005–19. doi: 10.1080/01904167.2021.1936036.
  • Carvalho, R., A. E. Furtini Neto, C. D. D. Santos, L. A. Fernandes, N. Curi, and D. D. C. Rodrigues. 2001. Silicon-phosphorus interactions in soils cultivated with eucalyptus under greenhouse conditions. Pesquisa Agropecuária Brasileira 36 (3):557–65. doi: 10.1590/S0100-204X2001000300022.
  • Chen, R., C. Zhang, Y. Zhao, Y. Huang, and Z. Liu. 2018. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environmental Science and Pollution Research İnternational 25 (3):2361–8. doi: 10.1007/s11356-017-0681-z.
  • Chichiriccò, G., and A. Poma. 2015. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials (Basel, Switzerland) 5 (2):851–73. doi: 10.3390/nano5020851.
  • Dung, P. D., L. S. Ngoc, N. N. Duy, N. N. Thuy, L. T. M. Truc, B. V. Le, D. V. Phu, and N. Q. Hien. 2016. Effect of nanosilica from rice husk on the growth enhancement of chili plant (Capsicum frutescens L.). Vietnam Journal of Science and Technology 54 (5):607–13. doi: 10.15625/0866-708X/54/5/7034.
  • Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641–64. doi: 10.1146/annurev.arplant.50.1.641.
  • Farhangi-Abriz, S., and S. Torabian. 2018. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255 (3):953–62. doi: 10.1007/s00709-017-1202-0.
  • Gunes, A., A. Inal, and Y. K. Kadioglu. 2009. Determination of mineral element concentrations in wheat, sunflower, chickpea and lentil cultivars in response to P fertilization by polarized energy dispersive X‐ray fluorescence. X-Ray Spectrometry 38 (5):451–62. doi: 10.1002/xrs.1186.
  • Haynes, R. J. 2014. A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science 177 (6):831–44. doi: 10.1002/jpln.201400202.
  • Heuer, S., R. Gaxiola, R. Schilling, L. Herrera‐Estrella, D. López‐Arredondo, M. Wissuwa, E. Delhaize, and H. Rouached. 2017. Improving phosphorus use efficiency: A complex trait with emerging opportunities. The Plant Journal : For Cell and Molecular Biology 90 (5):868–85. doi: 10.1111/tpj.13423.
  • Javed, S. H., F. H. Shah, and M. Manasha. 2011. Extraction of amorphous silica from wheat husk using KMnO4. Journal of Faculty of Engineering & Technology 18:39–46.
  • Kamath, S. R., and A. Proctor. 1998. Silica gel from rice hull ash: Preparation and characterization. Cereal Chemistry Journal 75 (4):484–7. doi: 10.1094/CCHEM.1998.75.4.484.
  • Khan, Z. S., M. Rizwan, M. Hafeez, S. Ali, M. Adrees, M. F. Qayyum, S. Khalid, M. Z. Rehman, and M. A. Sarwar. 2020. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environmental Science and Pollution Research İnternational 27 (5):4958–68. doi: 10.1007/s11356-019-06673-y.
  • Kostic, L., N. Nikolic, D. Bosnic, J. Samardzic, and M. Nikolic. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant and Soil 419 (1–2):447–55. doi: 10.1007/s11104-017-3364-0.
  • Kumaraswamy, R. V., V. Saharan, S. Kumari, R. C. Choudhary, A. Pal, S. S. Sharma, S. Rakshit, R. Raliya, and P. Biswas. 2021. Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry : PPB 159:53–66. doi: 10.1016/j.plaphy.2020.11.054.
  • Lu, M. M., D. M. De Silva, E. Peralta, A. Fajardo, and M. Peralta. 2015. Effects of nanosilica powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum). Philippine e-Journal for Applied Research and Development 5:11–22.
  • Ma, J. F. 2010. Silicon transporters in higher plants. In MIPs and their role in the exchange of metalloids, 99–109. Berlin: Springer.
  • Ma, J. F., and E. Takahashi. 1990. The effect of silicic acid on rice in a P-deficient soil. Plant and Soil 126 (1):121–5. doi: 10.1007/BF00041377.
  • Manjunatha, S. B., D. P. Biradar, and Y. R. Aladakatti. 2016. Nanotechnology and its applications in agriculture: A review. Journal of Farm Science 29:1–13.
  • Neu, S., J. Schaller, and E. G. Dudel. 2017. Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Scientific Reports 7:40829. doi: 10.1038/srep40829.
  • Page, A. L. 1982. Methods of soil analysis part 2: Chemical and microbiological properties. 2nd ed. Madison, WI: American Society of Agronomy and Soil Science Society of America.
  • Pati, S., B. Pal, S. Badole, G. C. Hazra, and B. Mandal. 2016. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Communications in Soil Science and Plant Analysis 47 (3):284–90. doi: 10.1080/00103624.2015.1122797.
  • Pode, R. 2016. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 53:1468–85. doi: 10.1016/j.rser.2015.09.051.
  • Pozza, A. A. A., N. Curi, E. T. D. S. Costa, L. R. G. Guilherme, J. J. G. D. S. Marques, and P. E. F. D. Motta. 2007. Competitive retention and desorption of inorganic anions on natural soil gibbsite. Pesquisa Agropecuária Brasileira 42 (11):1627–33. doi: 10.1590/S0100-204X2007001100015.
  • Pulz, A. L., C. A. C. Crusciol, L. B. Lemos, and R. P. Soratto. 2008. Silicate and limestone effects on potato nutrition, yield and quality under drought stress. Revista Brasileira de Ciência do Solo 32 (4):1651–9. doi: 10.1590/S0100-06832008000400030.
  • Ramaekers, L., R. Remans, I. M. Rao, M. W. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117 (2-3):169–76. doi: 10.1016/j.fcr.2010.03.001.
  • Rastogi, A., D. K. Tripathi, S. Yadav, D. K. Chauhan, M. Živčák, M. Ghorbanpour, N. I. El-Sheery, and M. Brestic. 2019. Application of silicon nanoparticles in agriculture. 3 Biotech 9 (3):1–11. doi: 10.1007/s13205-019-1626-7.
  • Richardson, A. E., J. P. Lynch, P. R. Ryan, E. Delhaize, F. A. Smith, S. E. Smith, P. R. Harvey, M. H. Ryan, E. J. Veneklaas, H. Lambers, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349 (1-2):121–56. doi: 10.1007/s11104-011-0950-4.
  • Roberts, T. L., and A. E. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling 105:275–81. doi: 10.1016/j.resconrec-09.0130921-3449.
  • Sarangi, M., S. Bhattacharyya, and R. C. Behera. 2009. Effect of temperature on morphology and phase transformations of nano crystalline silica obtained from rice husk. Phase Transitions. 82 (5):377–86. doi: 10.1080/01411590902978502.
  • Schaller, J., S. Faucherre, H. Joss, M. Obst, M. Goeckede, B. Planer-Friedrich, S. Peiffer, B. Gilfedder, and B. Elberling. 2019. Silicon increases the phosphorus availability of Arctic soils. Scientific Reports 9 (1):11. doi: 10.1038/s41598-018-37104-6.
  • Silva, J. L. F. D., and R. D. M. Prado. 2021. Elucidating the action mechanisms of silicon in the mitigation of phosphorus deficiency and enhancement of its response in sorghum plants. Journal of Plant Nutrition 44 (17):2572–82. doi: 10.1080/01904167.2021.1918155.
  • Stephano, F. M., Y. Geng, G. Cao, L. Wang, W. Meng, and Z. Meiling. 2021. Effect of silicon fertilizer and straw return on the maize yield and phosphorus efficiency in Northeast China. Communications in Soil Science and Plant Analysis 52 (2):116–27. doi: 10.1080/00103624.2020.1854284.
  • T. Suciaty., D. Purnomo, A. T., and Sakya, Supriyadi. 2018. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield. IOP Conference Series: Earth and Environmental Science 129:012009. doi: 10.1088/1755-1315/129/1/012009.
  • Sun, D., H. I. Hussain, Z. Yi, J. E. Rookes, L. Kong, and D. M. Cahill. 2016. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91. doi: 10.1016/j.chemosphere.2016.02.096.
  • Suriyaprabha, R., G. Karunakaran, R. Yuvakkumar, P. Prabu, V. Rajendran, and N. Kannan. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research 14 (12):1–14. and doi: 10.1007/s11051-012-1294-6.
  • Suriyaprabha, R., G. Karunakaran, R. Yuvakkumar, V. Rajendran, and N. Kannan. 2014. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44 (8):1128–31. doi: 10.1080/15533174.2013.799197.
  • Syers, J. K., A. E. Johnston, and D. Curtin. 2008. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin 18:108.
  • Tateda, M. 2016. Production and effectiveness of amorphous silica fertilizer from rice husks using a sustainable local energy system. Journal of Scientific Research and Reports 9 (3):1–12. doi: 10.9734/JSRR/2016/21825.
  • Tripathi, D. K., S. Singh, V. P. Singh, S. M. Prasad, N. K. Dubey, and D. K. Chauhan. 2017. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry: PPB 110:70–81. doi: 10.1016/j.plaphy.2016.06.026.
  • Veneklaas, E. J., H. Lambers, J. Bragg, P. M. Finnegan, C. E. Lovelock, W. C. Plaxton, C. A. Price, W. R. Scheible, M. W. Shane, P. J. White, et al. 2012. Opportunities for improving phosphorus‐use efficiency in crop plants. The New Phytologist 195 (2):306–20. doi: 10.1111/j.1469-8137.2012.04190.x.
  • Wang, L., U. Ashraf, C. Chang, M. Abrar, and X. Cheng. 2020. Effects of silicon and phosphatic fertilization on rice yield and soil fertility. Journal of Soil Science and Plant Nutrition 20 (2):557–65. doi: 10.1007/s42729-019-00145-5.
  • White, P. J., and J. P. Hammond. 2008. Phosphorus nutrition of terrestrial plants. In The ecophysiology of plant-phosphorus interactions, 51–81. Dordrecht: Springer. doi: 10.1007/978-1-4020-8435-5-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.