274
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Improving zinc supply enhances cotton nutritional phosphorus efficiency

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2451-2461 | Received 23 May 2022, Accepted 21 Sep 2022, Published online: 09 Dec 2022

References

  • Ali, H., and M. I. Ahmad. 2021. Agronomic efficiency and profitability of cotton on integrated use of phosphorus and plant microbes. Brazilian Journal of Biology = Revista Brasleira de Biologia 81 (2):484–94. doi: 10.1590/1519-6984.232940.
  • Bouain, N., Z. Shahzad, A. Rouached, G. A. Khan, P. Berthomieu, C. Abdelly, Y. Poirer, and H. Rouached. 2014. Phosphate and zinc transport and signaling in plants: Toward a better understanding of their homeostasis interaction. Experimental Botany 30:17.
  • Broadley, M. R., S. Ó. Lochlainn, J. P. Hammond, H. C. Bowen, I. Cakmak, S. Eker, H. Erdem, G. J. King, and P. J. White. 2010. Shoot zinc (Zn) concentration varies widely within Brassica oleracea L. and is affected by soil Zn and phosphorus (P) levels. The Journal of Horticultural Science and Biotechnology 85 (5):375–80. doi: 10.1080/14620316.2010.11512683.
  • Buckley, C., D. P. Wall, B. Moran, and P. N. C. Murphy. 2015. Developing the EU Farm Accountancy Data Network to derive indicators around the sustainable use of nitrogen and phosphorus at farm level. Nutrient Cycling in Agroecosystems 102 (3):319–33. doi: 10.1007/s10705-015-9702-9.
  • Cakmak, I., and H. Marschner. 1987. Mechanism of phosphorus‐induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants Is mail. Physiologia Plantarum 70 (1):13–20. doi: 10.1111/j.1399-3054.1987.tb08690.x.
  • Denton, M., E. J. Veneklaas, F. M. Freimoser, and H. Lambers. 2007. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant, Cell & Environment 30 (12):1557–65. doi: 10.1111/j.1365-3040.2007.01733.x.
  • Echer, F. R., C. F. dos Santos, and E. de Jesus. 2020. The effects of nitrogen, phosphorus, and potassium levels on the yield and fiber quality of cotton cultivars. Journal of Plant Nutrition 43 (7):921–32. doi: 10.1080/01904167.2019.1702204.
  • Fageria, N. K., V. C. Baligar, A. Moreira, and L. A. C. Moraes. 2013. Soil phosphorus influence on growth and nutrition of tropical legume cover crops in acidic soil. Communications in Soil Science and Plant Analysis 44 (22):3340–64. doi: 10.1080/00103624.2013.847954.
  • Feng, L., J. Dai, L. Tian, H. Zhang, W. Li, and H. Dong. 2017. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Research 208:18–26. doi: 10.1016/j.fcr.2017.03.008.
  • Hermans, C., J. P. Hammond, P. J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science 11 (12):610–7. doi: 10.1016/j.tplants.2006.10.007.
  • Hidaka, A., and K. Kitayama. 2009. Divergent patterns of photosynthetic phosphorus‐use efficiency versus nitrogen‐use efficiency of tree leaves along nutrient‐availability gradients. Journal of Ecology 97 (5):984–91. doi: 10.1111/j.1365-2745.2009.01540.x.
  • Hidaka, A., and K. Kitayama. 2013. Relationship between photosynthetic phosphorus‐use efficiency and foliar phosphorus fractions in tropical tree species. Ecology and Evolution 3 (15):4872–80. doi: 10.1002/ece3.861.
  • Huang, C., S. J. Barker, P. Langridge, F. W. Smith, and R. D. Graham. 2000. Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and –deficient barley roots. Plant Physiology 124 (1):415–22. doi: 10.1104/pp.124.1.415.
  • Jones, B. 1987. Kjeldahl nitrogen determination. Journal of Plant Nutrition 10 (9):1675–82. doi: 10.1080/01904168709363706.
  • Keneni, G., E. Bekele, F. Assefa, M. Imtiaz, T. Debele, K. Dagne, and E. Getu. 2015. Characterization of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions for phosphorus uptake and use efficiency II. Interrelationships of characters and gains from selection. Ethiopian Journal of Science and Technology 6:77–96.
  • Khan, G. A., S. Bouraine, S. Wege, Y. Li, M. Carbonnel, P. Berthomieu, Y. Poirier, and H. Rouached. 2014. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHHO1;H3 in Arabidopsis. Journal of Experimental Botany 65 (3):871–84. doi: 10.1093/jxb/ert444.
  • Kisko, M., N. Bouain, A. Safi, A. Medici, R. C. Akkers, D. Secco, G. Fouret, G. Krouk, M. G. Aarts, W. Busch, et al. 2018. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 7: e32077. doi: 10.7554/eLife.32077.
  • Lambers, H., P. M. Finnegan, R. Jost, W. C. Plaxton, M. W. Shane, and M. Stitt. 2015. Phosphorus nutrition in Proteaceae and beyond. Nature Plants 1:15109. doi: 10.1038/nplants.2015.109.
  • Li, H. Y., Y. G. Zhu, S. E. Smith, and F. A. Smith. 2003. Phosphorus- zinc interactions in two barley cultivars differing in phosphorus and zinc efficiencies. Journal of Plant Nutrition 26 (5):1085–99. doi: 10.1081/PLN-120020077.
  • Malavolta, E., G. C. Vitti, and S. A. Oliveira. 1997. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2nd ed. Piracicaba: POTAFOS, 319p.
  • Marcante, N. C., T. Muraoka, I. P. Bruno, and M. A. Camacho. 2016. Phosphorus uptake and use efficiency of different cotton cultivars in savannah soil (Acrisol). Acta Scientiarum. Agronomy 38 (2):239–47. doi: 10.4025/actasciagron.v38i2.26551.
  • Moore, A., S. Hines, D. Brown, C. Falen, M. H. Marti, M. Chahine, R. Norell, J. Ippolito, S. Parkinson, and M. Satterwhite. 2014. Soil-plant nutrient interactions on manure-enriched calcareous soils. Agronomy Journal 106 (1):73–80. doi: 10.2134/agronj2013.0345.
  • Nichols, B. A., B. G. Hopkins, V. D. Jolley, B. L. Webb, B. G. Greenwood, and J. R. Buck. 2012. Phosphorus and zinc interactions and their relationships with other nutrients in maize grown in chelator-buffered nutrient solution. Journal of Plant Nutrition 35 (1):123–41. doi: 10.1080/01904167.2012.631672.
  • Ova, E. A., U. B. Kutman, L. Ozturk, and I. Cakmak. 2015. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil 393 (1-2):147–62. doi: 10.1007/s11104-015-2483-8.
  • Pavinato, P. S., and C. A. Rosolem. 2008. Effects of organic compounds produced by plants on soil nutrient availability. Revista Brasileira de Ciência do Solo 32 (3):911–20. (In Portuguese, with English abstract) doi: 10.1590/S0100-06832008000300001.
  • Pongrac, P., J. W. Mcnicol, A. Lilly, J. A. Thompson, G. Wright, S. Hillier, and P. J. White. 2019. Mineral element composition of cabbage as affected by soil type and phosphorus and zinc fertilisation. Plant and Soil 434 (1–2):151–65. doi: 10.1007/s11104-018-3628-3.
  • Pongrac, P., S. Fischer, J. A. Thompson, G. Wright, and P. J. White. 2019. Early responses of brassica oleracea roots to zinc supply under sufficient and sub-optimal phosphorus supply. Frontiers in Plant Science 10:1645. doi: 10.3389/fpls.2019.01645.
  • R Development Core Team. (2018). R: A language and environment for statistical computing.
  • Rose, T. J., M. T. Rose, J. Pariasca-Tanaka, S. Heuer, and M. Wissuwa. 2011. The frustration with utilization: Why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Frontiers in Plant Science 2:73. doi: 10.3389/fpls.2011.00073.
  • Rose, T. J., S. M. Impa, M. T. Rose, J. Pariasca-Tanaka, A. Mori, S. Heuer, S. E. Johnson-Beebout, and M. Wissuwa. 2013. Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Annals of Botany 112 (2):331–45. doi: 10.1093/aob/mcs217.
  • Sánchez-Rodríguez, A. R., M.-D. Rey, H. Nechate-Drif, M. Á. Castillejo, J. V. Jorrín-Novo, J. Torrent, M. C. del Campillo, and D. Sacristán. 2021. Combining P and Zn fertilization to enhance yield and grain quality in maize grown on Mediterranean soils. Scientific Reports 11 (1):1–14. doi: 10.1038/s41598-021-86766-2.
  • Santos, E. F., P. Pongrac, A. R. Reis, F. H. S. Rabêlo, R. A. Azevedo, P. J. White, and J. Lavres. 2021. Unravelling homeostasis effects of phosphorus and zinc nutrition by leaf photochemistry and metabolic adjustment in cotton plants. Scientific Reports 11 (1):13746. doi: 10.1038/s41598-021-93396-1.
  • Santos, E. F., P. Pongrac, A. R. Reis, P. J. White, and J. O. S. É. Lavres. 2019. Phosphorus-zinc interactions in cotton: Consequences for biomass production and nutrient use efficiency in photosynthesis. Physiologia Plantarum 166 (4):996–1007. doi: 10.1111/ppl.12867.
  • Santos, E., N. Marcante, T. Muraoka, and M. Camacho. 2015. Phosphorus use efficiency in pima cotton (Gossypium barbadense L.) genotypes. Chilean Journal of Agricultural Research 75 (2):210–5. doi: 10.4067/S0718-58392015000200010.
  • Sulpice, R., H. Ishihara, A. Schlereth, G. R. Cawthray, B. Encke, P. Giavalisco, A. Ivakov, S. Arrivault, R. Jost, N. Krohn, et al. 2014. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant, Cell & Environment 37 (6):1276–98. doi: 10.1111/pce.12240.
  • White, P. J., and J. P. Hammond. 2008. Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP, editors. The ecophysiology of plant-phosphorus interactions. Dordrecht: Springer; p. 51–81. ISBN: 978-1-4020-8434-8.
  • Withers, P. J. A., M. Rodrigues, A. Soltangheisi, T. S. de Carvalho, L. R. G. Guilherme, V. d M. Benites, L. C. Gatiboni, D. M. G. de Sousa, R. D. S. Nunes, C. A. Rosolem, et al. 2018. Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports 8 (1):2537. doi: 10.1038/s41598-018-20887-z.
  • Zhang, K., D. J. Greenwood, P. J. White, and I. G. Burns. 2007. A dynamic model for the combined effects of N, P and K fertilisers on yield and mineral composition; description and experimental test. Plant and Soil 298 (1–2):81–98. doi: 10.1007/s11104-007-9342-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.