80
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Oxalic acid treated low grade rock phosphate can be a potent supplemental P source to grow wheat in inceptisol

ORCID Icon, &
Pages 2581-2594 | Received 05 Aug 2021, Accepted 05 Oct 2022, Published online: 28 Dec 2022

References

  • Azziz, G., N. Bajsa, T. Haghjou, C. Taulé, Á. Valverde, J. M. Igual, and A. Arias. 2012. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Applied Soil Ecology 61:320–6. doi: 10.1016/j.apsoil.2011.10.004.
  • Basak, B. B. 2019. Phosphorus release by low molecular weight organic acids from low-grade Indian rock phosphate. Waste and Biomass Valorization 10 (11):3225–33. doi: 10.1007/s12649-018-0361-3.
  • Basak, R. K., R. R. Halder, and N. C. Debnath. 1987. Efficiency of biosuper as fertilizer in sesame-rice cropping sequence in non-acid soil. Environment & Ecology 5:537–40.
  • Biswas, S. S., D. R. Biswas, A. Ghosh, A. Sarkar, A. Das, and T. Roy. 2022b. Phosphate solubilizing bacteria inoculated low-grade rock phosphate can supplement P fertilizer to grow wheat in sub-tropical inceptisol. Rhizosphere 23:100556. doi: 10.1016/j.rhisph.2022.100556.
  • Biswas, S. S., D. R. Biswas, T. J. Purakayastha, A. Sarkar, R. Kumar, T. K. Das, M. Barman, S. Pabbi, A. Ghosh, and R. Pal. 2021b. Residual effect of rock-phosphate and PSB on rice yield and soil properties. The Indian Journal of Agricultural Sciences 91 (3):440–4. doi: 10.56093/ijas.v91i3.112528.
  • Biswas, S. S., D. R. Biswas, and T. Roy. 2022a. Oxalic-acid-treated low-grade rock phosphate can supplement conventional phosphorus fertilizer to grow wheat in Alfisol. Journal of Soil Science and Plant Nutrition 22 (2):1885–93. and doi: 10.1007/s42729-022-00779-y.
  • Biswas, D. R., A. Ghosh, S. Ramachandran, B. B. Basak, R. Bhattacharyya, S. S. Biswas, A. Sarkar, and P. C. Moharana. 2021c. Decay kinetics of enzymes as influenced by manuring under varying hydrothermal regimes in a wheat–maize cropping system of subtropical cambisols in India. Journal of Soil Science and Plant Nutrition 21 (2):908–21. doi: 10.1007/s42729-021-00410-6.
  • Biswas, S. S., A. Ghosh, S. K. Singhal, D. R. Biswas, T. Roy, A. Sarkar, and D. Das. 2019. Phosphorus enriched organic amendments can increase nitrogen use efficiency in wheat. Communications in Soil Science and Plant Analysis 50 (9):1178–91. doi: 10.1080/00103624.2019.1604736.
  • Biswas, D. R., and G. Narayanasamy. 2006. Rock phosphate enriched compost: An approach to improve low-grade Indian rock phosphate. Bioresource Technology 97 (18):2243–51. doi: 10.1016/j.biortech.2006.02.004.
  • Biswas, S. S., S. K. Singhal, D. R. Biswas, R. D. Singh, T. Roy, A. Sarkar, A. Ghosh, and D. Das. 2017. Synchronization of nitrogen supply with demand by wheat using sewage sludge as organic amendment in an Inceptisol. Journal of the Indian Society of Soil Science 65 (3):264–73. doi: 10.5958/0974-0228.2017.00030.5.
  • Biswas, S. S., D. R. Singh, L. C. De, N. S. Kalaivanan, R. Pal, and T. Janakiram. 2021a. A comprehensive scenario of orchid nutrition–a review. Journal of Plant Nutrition 44 (6):905–17. doi: 10.1080/01904167.2021.1871758.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal 54 (5):464–5. doi: https://doi.org/10.2134/agronj1962.00021962005400050028x.
  • Brookes, P. C., Powlson, D. S. Jenkinson, and D. S. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry 14 (4):319–29. doi: 10.1016/0038-0717(82)90001-3.
  • Cordell, D., J. O. Drangert, and S. White. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19 (2):292–305. doi: 10.1016/j.gloenvcha.2008.10.009.
  • Earl, K. D., J. K. Syers, and J. R. McLaughlin. 1979. Origin of the effects of citrate, tartrate, and acetate on phosphate sorption by soils and synthetic gels. Soil Science Society of America Journal 43 (4):674–8. doi: 10.2136/sssaj1979.03615995004300040009x.
  • Eivazi, F., and M. A. Tabatabai. 1977. Phosphatases in soils. Soil Biology and Biochemistry 9 (3):167–72. doi: 10.1016/0038-0717(77)90070-0.
  • FAI. 2014. Fertiliser Statistics 2013-14. The Fertiliser Association of India, New Delhi.
  • Fertiliser (Control) Order (1985) and Essential Commodities Act (1955) Printed by the Fertiliser Association of India, New Delhi.
  • Fox, T. R., N. B. Comerford, and W. W. McFee. 1990. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Science Society of America Journal 54 (6):1763–7. doi: 10.2136/sssaj1990.03615995005400060043x.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedures for agricultural research. New York: John Wiley & Sons.
  • Gyaneshwar, P., G. N. Kumar, L. J. Parekh, and P. S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245 (1):83–93. doi: 10.1023/A:1020663916259.
  • Hanway, J. J., and H. Heidel. 1952. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agriculture 57:1–31.
  • Illmer, P., and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry 24 (4):389–95. doi: 10.1016/0038-0717(92)90199-8.
  • Jackson, M. L. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India Private Limited.
  • Jin, K., S. Sleutel, D. Buchan, S. De Neve, D. X. Cai, D. Gabriels, and J. Y. Jin. 2009. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil and Tillage Research 104 (1):115–20. doi: 10.1016/j.still.2009.02.004.
  • Jones, D. L. 1998. Organic acids in the rhizosphere–a critical review. Plant and Soil 205 (1):25–44. doi: 10.1023/A:1004356007312.
  • Kamran, M. A., J. Jiang, J. Y. Li, R. Y. Shi, K. Mehmood, M. Baquy, and R. K. Xu. 2018. Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure-and peat-derived biochars in different acidic soils. Arabian Journal of Geosciences 11 (11):1–15. doi: 10.1007/s12517-018-3616-1.
  • Klein, D. A., T. C. Loh, and R. L. Goulding. 1971. A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biology and Biochemistry 3 (4):385–7. doi: 10.1016/0038-0717(71)90049-6.
  • Kumari, K., and V. K. Phogat. 2008. Rock phosphate: Its availability and solubilization in the soil–A review. Agricultural Reviews 29:108–16.
  • Kuo, S. 1996. Phosphorus. In Methods of soil analysis. Part III. Chemical methods, ed. D. L. Sparks, A. L. Page, P. A. Helmke, and R. H. Loeppert, 869–920. Madison, WI: Soil Science Society of America and American Society of Agronomy.
  • Lian, T., Q. Ma, Q. Shi, Z. Cai, Y. Zhang, Y. Cheng, and H. Nian. 2019. High aluminum stress drives different rhizosphere soil enzyme activities and bacterial community structure between aluminum-tolerant and aluminum-sensitive soybean genotypes. Plant and Soil 440 (1–2):409–25. doi: 10.1007/s11104-019-04089-8.
  • Maharana, R., A. Basu, N. K. Dhal, and T. Adak. 2021. Biosolubilization of rock phosphate by Pleurotus ostreatus with brewery sludge and its effect on the growth of maize (Zea mays L.). Journal of Plant Nutrition 44 (3):395–410. doi: 10.1080/01904167.2020.1822397.
  • Malhotra, H., S. Sharma, and R. Pandey. 2018. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K. and Hawrylak-Nowak, B. (Eds.), Plant nutrients and abiotic stress tolerance, 171–90. Singapore: Springer.
  • Mandal, A., A. K. Patra, D. Singh, A. Swarup, and R. E. Masto. 2007. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresource Technology 98 (18):3585–92. doi: 10.1016/j.biortech.2006.11.027.
  • McLachlan, K. D. 1980. Acid phosphatase activity of intact roots and phosphorus nutrition in plants. 1. Assay conditions and phosphatase activity. Australian Journal of Agricultural Research 31 (3):429–40. doi: 10.1071/AR9800429.
  • Mendes, G. O., H. M. Murta, R. V. Valadares, W. B. Silveira, I. R. Silva, and M. Costa. 2020. Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Minerals Engineering 155:106458. doi: https://doi.org/10.1016/j.mineng.
  • Mengel, K., and E. A. Kirkby. 2001. Principles of plant nutrition. Dordrecht: Kluwer Academic Publishers, 849 p.
  • Olsen, S. R., C. W. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, D. C: US Department of Agriculture, Circular 939.
  • Omar, S. A. 1998. The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology 14 (2):211–8. doi: 10.1023/A:1008830129262.
  • Otani, T., N. Ae, and H. Tanaka. 1996. Phosphorus (P) uptake mechanisms of crops grown in soils with low P status: II. Significance of organic acids in root exudates of pigeonpea. Soil Science and Plant Nutrition 42 (3):553–60. doi: 10.1080/00380768.1996.10416324.
  • Page, A. L., R. H. Miller, and D. R. Keeney. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd edn. Agronomy, 9ASA, Soil Science Society of America, Madison, WI, 1159.
  • Prud’homme, M. 2006. Global fertilizers and raw materials supply and supply/demand balances: 2006–2010. In IFA Annual Conference, 39–42. Cape Town. Paris: IFA.
  • Rodríguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17 (4–5):319–39. doi: 10.1016/s0734-9750(99)00014-2.
  • Roy, T., D. R. Biswas, S. C. Datta, A. Sarkar, and S. S. Biswas. 2018. Citric acid loaded nano clay polymer composite for solubilization of Indian rock phosphates: A step towards sustainable and phosphorus secure future. Archives of Agronomy and Soil Science 64 (11):1564–81. doi: 10.1080/03650340.2018.1444275.
  • Sagoe, C. I., T. Ando, K. Kouno, and T. Nagaoka. 1998. Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Science and Plant Nutrition 44 (4):617–25. doi: 10.1080/00380768.1998.10414485.
  • Sarkar, A., D. R. Biswas, S. C. Datta, T. Roy, P. C. Moharana, S. S. Biswas, and A. Ghosh. 2018. Polymer coated novel controlled release rock phosphate formulations for improving phosphorus use efficiency by wheat in an Inceptisol. Soil and Tillage Research 180:48–62. doi: 10.1016/j.still.2018.02.009.
  • Sarkar, A., D. R. Biswas, S. C. Datta, T. Roy, S. S. Biswas, A. Ghosh, M. Saha, P. C. Moharana, and R. Bhattacharyya. 2020. Synthesis of poly (vinyl alcohol) and liquid paraffin-based controlled release nitrogen-phosphorus formulations for improving phosphorus use efficiency in wheat. Journal of Soil Science and Plant Nutrition 20 (4):1770–84. doi: 10.1007/s42729-020-00249-3.
  • Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service.
  • Subbaiah, V. V., and G. K. Asija. 1956. A rapid procedure for utilization of available nitrogen in soil. Current Science 26:258–60.
  • Sujata, M. V. 2014. International and national market perspective of 'P' fertilisers. Indian Journal of Fertilisers 10:72–80.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1 (4):301–7. doi: 10.1016/0038-0717(69)90012-1.
  • Walker, T. W, and Adams, A. F. R. 1958. Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Science 85 (6):307–18. doi: 10.1097/00010694-195806000-00004.
  • Walkley, A, and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37:29–38.
  • Watanabe, F. S., and S. R. Olsen. 1965. Test of ascorbic acid method for determining phosphorus in water and sodium bicarbonate extracts of soil. Soil Science Society of America, Proceedings 29 (6):677–8. doi: 10.2136/sssaj1965.03615995002900060025x.
  • Wiens, J. T., B. J. Cade‐Menun, B. Weiseth, and J. J. Schoenau. 2019. Potential phosphorus export in snowmelt as influenced by fertilizer placement method in the Canadian Prairies. Journal of Environmental Quality 48 (3):586–93. doi: 10.2134/jeq2018.07.0276.
  • Zhu, F., L. Qu, X. Hong, and X. Sun. 2011. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evidence-Based Complementary and Alternative Medicine : eCAM 2011:615032. doi: 10.1155/2011/615032.
  • Zhu, J., B. Qu, and M. Li. 2017. Phosphorus mobilization in the Yeyahu Wetland: Phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils. International Biodeterioration & Biodegradation 124:304–13. doi: 10.1016/j.ibiod.2017.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.