853
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience

, , ORCID Icon, ORCID Icon, , , , , & show all
Pages 2551-2580 | Received 08 Nov 2021, Accepted 02 Oct 2022, Published online: 02 Jan 2023

References

  • Abriouel, H., C. M. Franz, N. B. Omar, and A. Gálvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 35 (1):201–32. doi: 10.1111/j.1574-6976.2010.00244.x.
  • Ahemad, M., and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 26 (1):1–20. doi: 10.1016/j.jksus.2013.05.001.
  • Ahkami, A. H., R. A. White, III, P. P. Handakumbura, and C. Jansson. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–43. doi: 10.1016/j.rhisph.2017.04.012.
  • Ahmad, I., M. Ahmad, A. Hussain, and M. Jamil. 2021. Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. Strain IA16: A promising approach for improving cotton growth. Folia Microbiologica 66 (1):115–25. doi: 10.1007/s12223-020-00831-3.
  • Ahmed, E., and S. J. Holmström. 2014. Siderophores in environmental research: Roles and applications. Microbial Biotechnology 7 (3):196–208. doi: 10.1111/1751-7915.12117.
  • Akhtar, S. S., M. F. Mekureyaw, C. Pandey, and T. Roitsch. 2019. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Frontiers in Plant Science 10:1777. doi: 10.3389/fpls.2019.01777.
  • Almaghrabi, O. A., T. S. Abdelmoneim, H. M. Albishri, and T. A. Moussa. 2014. Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory conditions. Life Science Journal 11 (11):764–72.
  • Amir, H. G., Z. H. Shamsuddin, M. S. Halimi, M. Marziah, and M. F. Ramlan. 2005. Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Communications in Soil Science and Plant Analysis 36 (15–16):2059–66. doi: 10.1080/00103620500194270.
  • Arnaouteli, S., N. C. Bamford, N. R. Stanley-Wall, and Á. T. Kovács. 2021. Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology 19: 1–15.
  • Arnison, P. G., M. J. Bibb, G. Bierbaum, A. A. Bowers, T. S. Bugni, G. Bulaj, J. A. Camarero, D. J. Campopiano, G. L. Challis, J. Clardy, et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Natural Product Reports 30 (1):108–60.
  • Arora, N. K., S. Tewari, and R. Singh. 2013. Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In Plant microbe symbiosis: Fundamentals and advances, 411–49. New Delhi: Springer.
  • Atlas, R. M., and R. Bartha. 1998. Microbial ecology: Fundamentals and applications. 4th ed., 109–26. New Delhi, India: Pearson Education.
  • Augusto, L., F. Delerue, A. Gallet‐Budynek, and D. L. Achat. 2013. Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta‐analysis approach. Global Biogeochemical Cycles 27 (3):804–15. doi: 10.1002/gbc.20069.
  • Backer, R., J. S. Rokem, G. Ilangumaran, J. Lamont, D. Praslickova, E. Ricci, S. Subramanian, and D. L. Smith. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9:1473. doi: 10.3389/fpls.2018.01473.
  • Baharlouei, J., E. Pazira, and M. Solhi. 2011. Evaluation of inoculation of plant growth-promoting Rhizobacteria on cadmium uptake by canola and barley. In 2nd international conference on environmental science and technology (Vol. 2, pp. 28-32).
  • Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57:233–66. doi: 10.1146/annurev.arplant.57.032905.105159.
  • Balcerowicz, D., S. Schoenaers, and K. Vissenberg. 2015. Cell fate determination and the switch from diffuse growth to planar polarity in Arabidopsis root epidermal cells. Frontiers in Plant Science 6:1163. doi: 10.3389/fpls.2015.01163.
  • Banerjee, M. R., L. Yesmin, and J. K. Vessey. 2005. Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. Handbook of Microbial Biofertilizers 48 (2): 137–81.
  • Bano, A., and R. J. P. B. Muqarab. 2017. Plant defence induced by PGPR against Spodoptera litura in tomato (Solanum lycopersicum L.). Plant Biology 19 (3):406–12.
  • Basu, A., P. Prasad, S. N. Das, S. Kalam, R. Z. Sayyed, M. S. Reddy, and H. El Enshasy. 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 13 (3):1140. doi: 10.3390/su13031140.
  • Berman-Frank, I., P. Lundgren, Y. B. Chen, H. Küpper, Z. Kolber, B. Bergman, and P. Falkowski. 2001. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science (New York, N.Y.) 294 (5546):1534–7. doi: 10.1126/science.1064082.
  • Bharti, V., A. Mehta, S. Singh, N. Jain, L. Ahirwal, and S. Mehta. 2015. Bacteriocin: A novel approach for preservation of food. International Journal of Pharmacy and Pharmaceutical Sciences, 17(9), 20–9.
  • Bhattacharyya, P., and D. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology 28 (4):1327–50. doi: 10.1007/s11274-011-0979-9.
  • Billah, M., M. Khan, A. Bano, T. U. Hassan, A. Munir, and A. R. Gurmani. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal 36 (10):904–16. doi: 10.1080/01490451.2019.1654043.
  • Bogdan, A. R., M. Miyazawa, K. Hashimoto, and Y. Tsuji. 2016. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends in Biochemical Sciences 41 (3):274–86. doi: 10.1016/j.tibs.2015.11.012.
  • Burén, S., and L. M. Rubio. 2018. State of the art in eukaryotic nitrogenase engineering. FEMS Microbiology Letters 365 (2):fnx274. doi: 10.1093/femsle/fnx274.
  • Cassán, F., A. Coniglio, G. López, R. Molina, S. Nievas, C. L. N. de Carlan, F. Donadio, D. Torres, S. Rosas, F. O. Pedrosa, et al. 2020. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils 56 (4):461–79. doi: 10.1007/s00374-020-01463-y.
  • Cesa-Luna, C., A. Baez, V. Quintero-Hernández, J. D. L. Cruz-Enríquez, M. D. Castañeda-Antonio, and J. Muñoz-Rojas. 2020. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biológica Colombiana 25 (1):140–54. doi: 10.15446/abc.v25n1.76867.
  • Chandler, D., A. S. Bailey, G. M. Tatchell, G. Davidson, J. Greaves, and W. P. Grant. 2011. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 366 (1573):1987–98. doi: 10.1098/rstb.2010.0390.
  • Chaudhary, D. Y., P. Gosavi, and A. Durve-Gupta. 2017. Isolation and application of siderophore producing bacteria. IJAR 3 (4):246–50.
  • Chauhan, A., S. Guleria, P. P. Balgir, A. Walia, R. Mahajan, P. Mehta, and C. K. Shirkot. 2017. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Brazilian Journal of Microbiology 48 (2):294–304.
  • Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai, and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34 (1):33–41. doi: 10.1016/j.apsoil.2005.12.002.
  • Chernin, L., and I. Chet. 2002. Microbial enzymes in the biocontrol of plant pathogens and pests. Enzymes in the Environment: Activity, Ecology, and Applications, 171–226. New York, United States: Marcel Dekker, Inc.
  • Choudhary, D. K., A. Prakash, and B. N. Johri. 2007. Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology 47 (4):289–97.
  • Chowdhury, F. T., N. R. Zaman, M. R. Islam, and H. Khan. 2021. Anti-fungal secondary metabolites and hydrolytic enzymes from rhizospheric bacteria in crop protection: A review. Journal of Bangladesh Academy of Sciences 44 (2):69–84. doi: 10.3329/jbas.v44i2.51452.
  • Cissoko, M., V. Hocher, H. Gherbi, D. Gully, A. Carré-Mlouka, S. Sane, S. Pignoly, A. Champion, M. Ngom, P. Pujic, et al. 2018. Actinorhizal signaling molecules: Frankia root hair deforming factor shares properties with NIN inducing factor. Frontiers in Plant Science 9:1494. doi: 10.3389/fpls.2018.01494.
  • Cluis, C. 2004. Junk-greedy greens: Phytoremediation as a new option for soil decontamination. Bio Teach Journal 2 (6):l–67.
  • Colebrook, E. H., S. G. Thomas, A. L. Phillips, and P. Hedden. 2014. The role of gibberellin signalling in plant responses to abiotic stress. The Journal of Experimental Biology 217 (Pt 1):67–75. doi: 10.1242/jeb.089938.
  • Colombo, C., G. Palumbo, J. Z. He, R. Pinton, and S. Cesco. 2014. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments 14 (3):538–48. doi: 10.1007/s11368-013-0814-z.
  • Cornelis, P. 2010. Iron uptake and metabolism in pseudomonads. Applied Microbiology and Biotechnology 86 (6):1637–45. doi: 10.1007/s00253-010-2550-2.
  • Cortés-Patiño, S., C. Vargas, F. Álvarez-Flórez, R. Bonilla, and G. Estrada-Bonilla. 2021. Potential of herbaspirillum and azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms 9 (1):91. doi: 10.3390/microorganisms9010091.
  • Coy, R. M., D. W. Held, and J. W. Kloepper. 2019. Rhizobacterial treatments of tall fescue and bermudagrass increases tolerance to damage from white grubs. Pest Management Science 75 (12):3210–7. ’ doi: 10.1002/ps.5439.
  • D'alessandro, M. A. R. C. O., M. Erb, J. Ton, A. Brandenburg, D. Karlen, J. Zopfi, and T. C. Turlings. 2014. Volatiles produced by soil‐borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell & Environment 37 (4):813–26.
  • Damam, M., K. Kaloori, B. Gaddam, and R. Kausar. 2016. Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. International Journal of Pharmaceutical Sciences Review and Research 37 (1):130–6.
  • Danhorn, T., and C. Fuqua. 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 61:401–22. doi: 10.1146/annurev.micro.61.080706.093316.
  • Dawson, J. O. 2007. Ecology of actinorhizal plants. In Nitrogen-fixing actinorhizal symbioses, 199–234. Dordrecht: Springer.
  • delCarmen Orozco-Mosqueda, M., C. Velázquez-Becerra, L. I. Macías-Rodríguez, G. Santoyo, I. Flores-Cortez, R. Alfaro-Cuevas, and E. Valencia-Cantero. 2013. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant and Soil 362 (1–2):51–66. doi: 10.1007/s11104-012-1263-y.
  • Dimkpa, C. 2016. Microbial siderophores: Production, detection and application in agriculture and environment. Endocytobiosis & Cell Research 27 (2):07–16.
  • Divjot, K. O. U. R., K. L. Rana, K. A. U. R. Tanvir, N. Yadav, A. N. Yadav, M. Kumar, and A. K. Saxena. 2021. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: A review. Pedosphere 31 (1):43–75.
  • Doolotkeldieva, T., and S. Bobusheva. 2020. Characterization of Pseudomonas syringae pv. syringae from diseased stone fruits in Kyrgyzstan and testing of biological agents against pathogen. International Journal of Phytopathology 9 (2):71–91. doi: 10.33687/phytopath.009.02.3270.
  • Doornbos, R. F., L. C. van Loon, and P. A. Bakker. 2012. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development 32 (1):227–43. doi: 10.1007/s13593-011-0028-y.
  • Etesami, H., H. A. Alikhani, and A. A. Akbari. 2009. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Applied Sciences Journal 6 (11):1576–84.
  • Etesami, H., S. Emami, and H. A. Alikhani. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. Journal of Soil Science and Plant Nutrition 17 (4):897–911. doi: 10.4067/S0718-95162017000400005.
  • Farooq, M., A. Wahid, N. S. M. A. Kobayashi, D. B. S. M. A. Fujita, and S. M. A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153–88. Berlin, Germany: Springer Nature.
  • Fatima, Z., M. Saleemi, M. Zia, T. Sultan, M. Aslam, R. Rehman, and M. F. Chaudhary. 2009. Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology 8 (2):219–225.
  • Feng, G., F. Zhang, X. Li, C. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12 (4):185–90.
  • Ferreira, M. J., H. Silva, and A. Cunha. 2019. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review. Pedosphere 29 (4):409–20. doi: 10.1016/S1002-0160(19)60810-6.
  • Figueiredo, M. D. V. B., A. C. D. E. Santo Mergulhão, J. K. Sobral, M. D. A. L. Junior, and A. S. F. de Araújo. 2013. Biological nitrogen fixation: Importance, associated diversity, and estimates. In Plant microbe symbiosis: Fundamentals and advances, 267–89. New Delhi: Springer.
  • Fleet, C. M., and T. P. Sun. 2005. A DELLAcate balance: The role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology 8 (1):77–85.
  • Flemming, H. C., and J. Wingender. 2010. The biofilm matrix. Nature Reviews. Microbiology 8 (9):623–33. doi: 10.1038/nrmicro2415.
  • Flores‐Vargas, R. D., and G. W. O'hara. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. Journal of Applied Microbiology 100 (5):946–54. doi: 10.1111/j.1365-2672.2006.02851.x.
  • Foyer, C. H., B. Rasool, J. W. Davey, and R. D. Hancock. 2016. Cross-tolerance to biotic and abiotic stresses in plants: A focus on resistance to aphid infestation. Journal of Experimental Botany 67 (7):2025–37. doi: 10.1093/jxb/erw079.
  • Frankowski, J., M. Lorito, F. Scala, R. Schmid, G. Berg, and H. Bahl. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology 176 (6):421–6. doi: 10.1007/s002030100347.
  • Gamalero, E., G. Berta, N. Massa, B. R. Glick, and G. Lingua. 2010. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions. Journal of Applied Microbiology 108 (1):236–45. doi: 10.1111/j.1365-2672.2009.04414.x.
  • Gamalero, E., and B. R. Glick. 2011. Mechanisms used by plant growth-promoting bacteria. In Bacteria in agrobiology: Plant nutrient management, 17–46. Berlin, Heidelberg: Springer.
  • Gerbore, J., N. Benhamou, J. Vallance, G. Le Floch, D. Grizard, C. Regnault-Roger, and P. Rey. 2014. Biological control of plant pathogens: Advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science and Pollution Research International 21 (7):4847–60. doi: 10.1007/s11356-013-1807-6.
  • Ghosh, P. K., T. K. De, and T. K. Maiti. 2018. Role of ACC deaminase as a stress ameliorating enzyme of plant growth-promoting rhizobacteria useful in stress agriculture: A review. Role of Rhizospheric Microbes in Soil, 57–106. Berlin, Germany: Springer.
  • Gillor, O., and L. Ghazaryan. 2007. Recent advances in bacteriocin application as antimicrobials. Recent Patents on anti-Infective Drug Discovery 2 (2):115–22. doi: 10.2174/157489107780832613.
  • Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41 (2):109–17. doi: 10.1139/m95-015.
  • Glick, B. R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012:1–15. doi: 10.6064/2012/963401.
  • Gontia-Mishra, I., S. Sapre, S. Kachare, and S. Tiwari. 2017. Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant and Soil 414 (1–2):213–27. doi: 10.1007/s11104-016-3119-3.
  • Gopalakrishnan, S., H. D. Upadhyaya, S. Vadlamudi, P. Humayun, M. S. Vidya, G. Alekhya, A. Singh, R. Vijayabharathi, R. K. Bhimineni, M. Seema, et al. 2012. Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. SpringerPlus 1 (1):1–7. doi: 10.1186/2193-1801-1-71.
  • Gray, E. J., and D. L. Smith. 2005. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry 37 (3):395–412. doi: 10.1016/j.soilbio.2004.08.030.
  • Grichko, V. P., and B. R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry 39 (1):11–7. doi: 10.1016/S0981-9428(00)01212-2.
  • Grobelak, A., A. Napora, and M. Kacprzak. 2015. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering 84:22–8. doi: 10.1016/j.ecoleng.2015.07.019.
  • Groenhagen, U., R. Baumgartner, A. Bailly, A. Gardiner, L. Eberl, S. Schulz, and L. Weisskopf. 2013. Production of bioactive volatiles by different Burkholderia ambifaria strains. Journal of Chemical Ecology 39 (7):892–906. doi: 10.1007/s10886-013-0315-y.
  • Guang-Can, T. A. O., T. I. A. N. Shu-Jun, C. A. I. Miao-Ying, and X. I. E. Guang-Hui. 2008. Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils. Pedosphere 18 (4):515–23.
  • Gupta, G., S. S. Parihar, N. K. Ahirwar, S. K. Snehi, and V. Singh. 2015. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology 7 (2):96–102.
  • Gutiérrez-Luna, F. M., J. López-Bucio, J. Altamirano-Hernández, E. Valencia-Cantero, H. R. de la Cruz, and L. Macías-Rodríguez. 2010. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51 (1):75–83. doi: 10.1007/s13199-010-0066-2.
  • Haggag, W. M., H. F. Abouziena, F. Abd-El-Kreem, and S. El Habbasha. 2015. Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. Journal of Chemical and Pharmaceutical Research 7 (10):882–9.
  • Hamid, B., M. Zaman, S. Farooq, S. Fatima, R. Z. Sayyed, Z. A. Baba, T. A. Sheikh, M. S. Reddy, H. El Enshasy, A. Gafur, et al. 2021. Bacterial plant bio-stimulants: A sustainable way towards improving growth, productivity, and health of crops. Sustainability 13 (5):2856. doi: 10.3390/su13052856.
  • Hamid, S., R. Lone, and H. I. Mohamed. 2021. Production of antibiotics from PGPR and their role in biocontrol of plant diseases. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 441–61. Berlin Germany: Springer Nature.
  • Harman, G. E. 1996. Trichoderma for biocontrol of plant pathogens: From basic research to commercialized products. Proceedings of the Cornell Community Conference on Biological Control, Ithaca, NY, April, Vol. 1113.
  • Harris, D. F., D. A. Lukoyanov, S. Shaw, P. Compton, M. Tokmina-Lukaszewska, B. Bothner, N. Kelleher, D. R. Dean, B. M. Hoffman, and L. C. Seefeldt. 2018. Mechanism of N2 reduction catalyzed by Fe-nitrogenase involves reductive elimination of H2. Biochemistry 57 (5):701–10. doi: 10.1021/acs.biochem.7b01142.
  • Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology 60 (4):579–98. doi: 10.1007/s13213-010-0117-1.
  • Hesse, E., S. O'Brien, N. Tromas, F. Bayer, A. M. Luján, E. M. van Veen, D. J. Hodgson, and A. Buckling. 2018. Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination. Ecology Letters 21 (1):117–27. doi: 10.1111/ele.12878.
  • Hooker, J. E., M. Jaizme-Vega, and D. Atkinson. 1994. Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems, 191–200. Basel: Birkhäuser.
  • Hossain, M. M., K. C. Das, S. Yesmin, and S. Shahriar. 2016. Effect of plant growth promoting rhizobacteria (PGPR) in seed germination and root-shoot development of chickpea (Cicer arietinum L.) under different salinity condition. Research in Agriculture Livestock and Fisheries 3 (1):105–13. doi: 10.3329/ralf.v3i1.27864.
  • Hou, J., W. Liu, B. Wang, Q. Wang, Y. Luo, and A. E. Franks. 2015. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–8. doi: 10.1016/j.chemosphere.2015.07.025.
  • Hu, Y., and M. W. Ribbe. 2013. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. The Journal of Biological Chemistry 288 (19):13173–7. doi: 10.1074/jbc.R113.454041.
  • Hussain, Z., R. A. Khattak, M. Irshad, Q. Mahmood, and P. An. 2016. Effect of saline irrigation water on the leachability of salts, growth and chemical composition of wheat (Triticum aestivum L.) in saline-sodic soil supplemented with phosphorus and potassium. Journal of Soil Science and Plant Nutrition 16 (3):604–20.
  • Hyder, S., A. S. Gondal, Z. F. Rizvi, R. Ahmad, M. M. Alam, A. Hannan, and M. Inam-Ul-Haq. 2020. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Scientific Reports 10 (1):1–15.
  • Hyder, S., A. S. Gondal, Z. F. Rizvi, R. Atiq, M. I. S. Haider, N. Fatima, and M. Inam-Ul-Haq. 2021. Biological control of chili damping-off disease, caused by Pythium myriotylum. Frontiers in Microbiology 12 (1):01–21.
  • Ingle, K. P., and D. A. Padole. 2017. Phosphate solubilizing microbes: An overview. International Journal of Current Microbiology and Applied Sciences 6 (1):844–52. doi: 10.20546/ijcmas.2017.601.099.
  • Inomura, K., J. Bragg, and M. J. Follows. 2017. A quantitative analysis of the direct and indirect costs of nitrogen fixation: A model based on Azotobacter vinelandii. The ISME Journal 11 (1):166–75. doi: 10.1038/ismej.2016.97.
  • Islam, S., A. M. Akanda, A. Prova, M. T. Islam, and M. M. Hossain. 2015. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology 6:1360. doi: 10.3389/fmicb.2015.01360.
  • Jha, B., I. Gontia, and A. Hartmann. 2012. The roots of the halophyte S alicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant and Soil 356 (1):265–77.
  • Jimenez, S., O. Santana, F. Lara-Rojas, M.-K. Arthikala, E. Armada, K. Hashimoto, K. Kuchitsu, S. Salgado, J. Aguirre, C. Quinto, et al. 2019. Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS One 14 (8): E 0219765. doi: 10.1371/journal.pone.0219765.
  • Jumali, S. S., I. M. Said, I. Ismail, and Z. Zainal. 2011. Genes induced by high concentration of salicylic acid’in’Mitragyna speci’sa. Australian Journal of Crop Science 5 (3):296.
  • Kalayu, G. 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy 2019:1–7. doi: 10.1155/2019/4917256.
  • Kamei, A., A. K. Dolai, and A. Kamei. 2014. Role of hydrogen cyanide secondary metabolite of plant growth promoting rhizobacteria as biopesticides of weeds. Global Journal of Science Frontier Research 14 (6):109–12.
  • Kamilova, F., L. V. Kravchenko, A. I. Shaposhnikov, T. Azarova, N. Makarova, and B. Lugtenberg. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Molecular Plant-Microbe Interactions® 19 (3):250–6. doi: 10.1094/MPMI-19-0250.
  • Kandasamy, S., K. Loganathan, R. Muthuraj, S. Duraisamy, S. Seetharaman, R. Thiruvengadam, B. Ponnusamy, and S. Ramasamy. 2009. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Science 7 (1):47–8. doi: 10.1186/1477-5956-7-47.
  • Kang, S. M., A. Adhikari, K. E. Lee, Y. G. Park, R. Shahzad, and I. J. Lee. 2021. Gibberellin producing rhizobacteria Pseudomonas koreensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis). Journal of Microbiology, Biotechnology and Food Sciences 2021:166–70.
  • Kang, S. M., M. Waqas, A. L. Khan, and I. J. Lee. 2014. Plant-growth-promoting rhizobacteria: Potential candidates for gibberellins production and crop growth promotion. In Use of microbes for the alleviation of soil stresses, vol. 1, 1–19. New York, NY: Springer.
  • Karthiba, L., K. Saveetha, S. Suresh, T. Raguchander, D. Saravanakumar, and R. Samiyappan. 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Management Science 66 (5):555–64. doi: 10.1002/ps.1907.
  • Kaur, J. 2021. PGPR in management of soil toxicity. In Rhizobiont in bioremediation of hazardous waste, 317–44. Singapore: Springer.
  • Kenneth, O. C., E. C. Nwadibe, A. U. Kalu, and U. V. Unah. 2019. Plant growth promoting rhizobacteria (PGPR): A novel agent for sustainable food production. American Journal of Agricultural and Biological Sciences 14 (1):35–54. doi: 10.3844/ajabssp.2019.35.54.
  • Khan, A., X. Pan, U. Najeeb, D. K. Y. Tan, S. Fahad, R. Zahoor, and H. Luo. 2018. Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research 51 (1): 1–17. doi: 10.1186/s40659-018-0198-z.
  • Khan, A. A., G. Jilani, M. S. Akhtar, S. M. S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences 1 (1):48–58.
  • Khan, M. S., A. Zaidi, P. A. Wani, and M. Oves. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters 7 (1):1–19. doi: 10.1007/s10311-008-0155-0.
  • Khan, N., and A. Bano. 2016. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. International Journal of Phytoremediation 18 (12):1258–69. doi: 10.1080/15226514.2016.1203287.
  • Khan, N., A. M. Bano, and A. Babar. 2020. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS One 15 (4):e0231426. doi: 10.1371/journal.pone.0231426.
  • Khan, N., A. Bano, M. A. Rahman, J. Guo, Z. Kang, and M. A. Babar. 2019. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports 9 (1):1–19. doi: 10.1038/s41598-019-38702-8.
  • Khan, W. A., N. Javed, M. Naveed, S. A. Khan, and S. Ahmad. 2022. Evaluation of integrated management approaches against citrus nematode (Tylenchulus semipenetrans) in Pakistan. International Journal of Phytopathology 11 (1):19–33. doi: 10.33687/phytopath.011.01.4092.
  • Khande, R., S. K. Sharma, A. Ramesh, and M. P. Sharma. 2017. Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–38. doi: 10.1016/j.rhisph.2017.09.002.
  • Khatoon, Z., S. Huang, M. Rafique, A. Fakhar, M. A. Kamran, and G. Santoyo. 2020. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management 273: 111118.
  • Kilian, M., U. Steiner, B. Krebs, H. Junge, G. Schmiedeknecht, and R. Hain. 2000. FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1 (0):1.
  • Kucho, K. I., K. Kakoi, M. Yamaura, S. Higashi, T. Uchiumi, and M. Abe. 2009. Transient transformation of Frankia by fusion marker genes in liquid culture. Microbes and Environments 24 (3):231–40. doi: 10.1264/jsme2.ME09115.
  • Kucho, K. I., D. Tamari, S. Matsuyama, T. Nabekura, and L. S. Tisa. 2017. Nitrogen fixation mutants of the actinobacterium Frankia casuarinae CcI3. Microbes and Environments 4 (1): 344–351.
  • Kudoyarova, G. R., T. N. Arkhipova, and A. I. Melent'ev. 2015. Role of bacterial phytohormones in plant growth regulation and their development. In Bacterial metabolites in sustainable agroecosystem, 69–86. Berlin, Germany: Springer Nature.
  • Kumar, A., R. S. Vandana, M. Singh, and K. D. Pandey. 2015. Plant growth-promoting rhizobacteria (PGPR). A promising approach to disease management. Microbes and environmental management, 195–209. New Delhi: Studium Press.
  • Kumar, N. R., V. T. Arasu, and P. Gunasekaran. 2002. Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Current Science 82:1465–6.
  • Kumar, A., S. Dewangan, P. Lawate, I. Bahadur, and S. Prajapati. 2019. Zinc-solubilizing bacteria: A boon for sustainable agriculture. In Plant growth promoting rhizobacteria for sustainable stress management, 139–55. Singapore: Springer.
  • Kumar, A., B. R. Maurya, R. Raghuwanshi, V. S. Meena, and M. T. Islam. 2017. Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. Journal of Plant Growth Regulation 36 (3):608–17. doi: 10.1007/s00344-016-9663-5.
  • Kumar, A., J. S. Patel, V. S. Meena, and R. Srivastava. 2019. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatalysis and Agricultural Biotechnology 20:101271. doi: 10.1016/j.bcab.2019.101271.
  • Kumar, P., and R. C. Dubey. 2012. Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. Journal of Current Perspectives in Applied Microbiology 1 (1):6–38.
  • Kumar, V., R. K. Behl, and N. Narula. 2001. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green-house conditions. Microbiological Research 156 (1):87–93. doi: 10.1078/0944-5013-00081.
  • Kumari, B., M. A. Mallick, M. K. Solanki, A. C. Solanki, A. Hora, and W. Guo. 2019. Plant growth promoting rhizobacteria (PGPR): Modern prospects for sustainable agriculture. In Plant health under biotic stress, 109–27. Singapore: Springer.
  • Labuschagne, N., T. Pretorius, and A. H. Idris. 2010. Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In Plant growth and health promoting bacteria, Microbiology monographs, ed. D. K. Maheshwari, 211–30. Berlin: Springer.
  • Laskar, F., G. D. Sharma, and B. Deb. 2013. Characterization of plant growth promoting traits of diazotrophic bacteria and their inoculating effects on growth and yield of rice crops. Global Journal for Research Analysis 2:3–5.
  • Lawton, K. A., L. Friedrich, M. Hunt, K. Weymann, T. Delaney, H. Kessmann, T. Staub, and J. Ryals. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of Systemic Acquired Resistance signal transduction pathway. The Plant Journal: For Cell and Molecular Biology 10 (1):71–82. doi: 10.1046/j.1365-313x.1996.10010071.x.
  • Le Mire, G., M. L. Nguyen, and B. Fassotte. 2016. Review: Implementing plant bio stimulants and biocontrol strategies in the agroecological management of cultivated ecosystems review: Implementing plant bio stimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnologies, Agronomy, Société et Environment 20:299–313.
  • Lucas, J. A., B. R. Solano, F. Montes, J. Ojeda, M. Megias, and F. G. Manero. 2009. Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Research 114 (3):404–10. doi: 10.1016/j.fcr.2009.09.013.
  • Lugtenberg, B. J., T. F. Chin-A-Woeng, and G. V. Bloemberg. 2002. Microbe–plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek 81 (1–4):373–83.
  • Lwin, K. M., M. M. Myint, T. Tar, and W. Z. M. Aung. 2012. Isolation of plant hormone (indole-3-acetic acid-IAA) producing rhizobacteria and study on their effects on maize seedling. Engineering Journal 16 (5):137–44. doi: 10.4186/ej.2012.16.5.137.
  • Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Journal of Hazardous Materials 166 (2–3):1154–61.
  • Ma, Y., M. Rajkumar, C. Zhang, and H. Freitas. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174:14–25. doi: 10.1016/j.jenvman.2016.02.047.
  • Mahdi, S. S., G. I. Hassan, S. A. Samoon, H. A. Rather, S. A. Dar, and B. Zehra. 2010. Bio-fertilizers in organic agriculture. Journal of Phytology 2 (10):42–54.
  • Maheshwari, D. K., R. C. Dubey, A. Aeron, B. Kumar, S. Kumar, S. Tewari, and N. K. Arora. 2012. Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World Journal of Microbiology & Biotechnology 28 (10):3015–24. doi: 10.1007/s11274-012-1112-4.
  • Maheswari, M., A. N. G. Murthy, and A. K. Shanker. 2017. Nitrogen nutrition in crops and its importance in crop quality. In The Indian nitrogen assessment, 175–86. Amsterdam, Netherlands: Elsevier.
  • Majeed, A., M. K. Abbasi, S. Hameed, A. Imran, and N. Rahim. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology 6:198. doi: 10.3389/fmicb.2015.00198.
  • Malik, Z. H., K. C. Ravindran, and G. Sathiyaraj. 2017. Phytoremediation: A novel strategy and eco-friendly green technology for removal of toxic metals. International Journal of Agricultural and Environmental Research 3 (1):1–18.
  • Mandal, M., and D. K. Das. 2013. Zinc in rice-wheat irrigated ecosystem. Rice Research: Open Access 01 (02): 1–21. doi: 10.4172/2375-4338.1000111.
  • Maqbool, S., A. Amna, S. Mehmood, M. Suhaib, T. Sultan, and M. F. H. Munis. 2021. Interaction of ACC deaminase and antioxidant enzymes to induce drought tolerance in Enterobacter cloacae 2WC2 inoculated maize genotypes. Pakistan Journal of Botany 53:3.
  • Martínez-Absalón, S., D. Rojas-Solís, R. Hernández-León, C. Prieto-Barajas, M. d C. Orozco-Mosqueda, J. J. Peña-Cabriales, S. Sakuda, E. Valencia-Cantero, and G. Santoyo. 2014. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Science and Technology 24 (12):1349–62. doi: 10.1080/09583157.2014.940846.
  • Martínez-Viveros, O., M. A. Jorquera, D. E. Crowley, G. M. L. M. Gajardo, and M. L. Mora. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition 10 (3):293–319. doi: 10.4067/S0718-95162010000100006.
  • Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry: PPB 42 (6):565–72. doi: 10.1016/j.plaphy.2004.05.009.
  • Mazumdar, D., S. P. Saha, and S. Ghosh. 2020. Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. International Journal of Vegetable Science 26 (4):333–50. doi: 10.1080/19315260.2019.1632401.
  • Mazzola, M., D. L. Funnell, and J. M. Raaijmakers. 2004. Wheat cultivar-specific selection of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microbial Ecology 48 (3):338–48. doi: 10.1007/s00248-003-1067-y.
  • Meena, M., P. Swapnil, K. Divyanshu, S. Kumar, Harish, Y. N. Tripathi, A. Zehra, A. Marwal, and R. S. Upadhyay. 2020. PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology 60 (10):828–61. doi: 10.1002/jobm.202000370.
  • Meena, V. S., I. Bahadur, B. R. Maurya, A. Kumar, R. K. Meena, S. K. Meena, and J. P. Verma. 2016. Potassium-solubilizing microorganism in evergreen agriculture: An overview. Potassium Solubilizing Microorganisms for Sustainable Agriculture, 1–20. Berlin Germany: Springer Nature.
  • Meena, V. S., B. R. Maurya, J. P. Verma, A. Aeron, A. Kumar, K. Kim, and V. K. Bajpai. 2015. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering 81:340–7. doi: 10.1016/j.ecoleng.2015.04.065.
  • Mishra, J., R. Singh, and N. K. Arora. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology 8:1706. doi: 10.3389/fmicb.2017.01706.
  • Misra, S., and P. S. Chauhan. 2020. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10 (3):1–14. doi: 10.1007/s13205-020-2104-y.
  • Mitra, D., S. Anđelković, P. Panneerselvam, A. Senapati, T. Vasić, A. N. Ganeshamurthy, M. Chauhan, N. Uniyal, B. Mahakur, and T. K. Radha. 2020. Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: Current perspective. Communications in Soil Science and Plant Analysis 51 (5):645–57. doi: 10.1080/00103624.2020.1729379.
  • Moustaine, M., R. Elkahkahi, A. Benbouazza, R. Benkirane, and E. H. Achbani. 2017. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum Lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology 2 (2):238708.
  • Mumtaz, M. Z., M. Ahmad, M. Jamil, and T. Hussain. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological Research 202:51–60.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Murali, O., and S. K. Mehar. 2014. Bioremediation of heavy metals using Spirulina. International Journal of Geology, Earth and Environmental Sciences 4 (1):244–9.
  • Mushtaq, Z., H. N. Asghar, Z. A. Zahir, and M. Maqsood. 2022. The interactive approach of rhizobacteria and l-tryptophan on growth, physiology, tuber characteristics, and iron concentration of potato (Solanum tuberosum L.). Journal of Plant Growth Regulation 41 (3):1359–66. doi: 10.1007/s00344-021-10395-2.
  • Mustafa, S., S. Kabir, U. Shabbir, and R. Batool. 2019. Plant growth promoting rhizobacteria in sustainable agriculture: From theoretical to pragmatic approach. Symbiosis 78 (2):115–23. doi: 10.1007/s13199-019-00602-w.
  • Nadeem, N., R. Asif, S. Ayyub, S. Salman, F. Shafique, Q. Ali, and A. Malik. 2020. Role of rhizobacteria in phytoremediation of heavy metals. Biological and Clinical Sciences Research Journal 2020 (1):e035. doi: 10.54112/bcsrj.v2020i1.35.
  • Nadeem, S. M., M. Naveed, Z. A. Zahir, and H. N. Asghar. 2013. Plant–microbe interactions for sustainable agriculture: Fundamentals and recent advances. Plant Microbe Symbiosis: Fundamentals and Advances, 51–103. Berlin Germany: Springer Nature.
  • Nadeem, S. M., Z. A. Zahir, M. Naveed, and M. Arshad. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology 53 (10):1141–9. doi: 10.1139/W07-081.
  • Nadeem, S. M., Z. A. Zahir, M. Naveed, and M. Arshad. 2009. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology 55 (11):1302–9. doi: 10.1139/w09-092.
  • Nakkeeran, S., K. Kavitha, G. Chandrasekar, P. Renukadevi, and W. G. D. Fernando. 2006. Induction of plant defense compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Science and Technology 16 (4):403–16. doi: 10.1080/09583150500532196.
  • Nandakumar, R., S. Babu, R. Viswanathan, J. Sheela, T. Raguchander, and R. Samiyappan. 2001. A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. BioControl 46 (4):493–510. doi: 10.1023/A:1014131131808.
  • Nieto, K. F., and W. T. Frankenberger, Jr. 2017. Microbial production of cytokinins. In Soil biochemistry, 191–248. London, United Kingdom: Routledge.
  • Niranjan, R., H. S. Shetty, and M. S. Reddy. 2005. Plant growth-promoting rhizobacteria: Potential green alternative for plant productivity. In: PGPR: Biocontrol and biofertilization, ed. Z. A. Siddiqui, 197–216. Dordrecht: Springer.
  • Nonaka, A., H. Yamamoto, N. Kamiya, H. Kotani, H. Yamakawa, R. Tsujimoto, and Y. Fujita. 2019. Accessory proteins of the nitrogenase assembly, NifW, NifX/NafY, and NifZ, are essential for diazotrophic growth in the nonheterocystous cyanobacterium Leptolyngbya boryana. Frontiers in Microbiology 10:495. doi: 10.3389/fmicb.2019.00495.
  • Ohsowski, B. M., K. Dunfield, J. N. Klironomos, and M. M. Hart. 2018. Plant response to biochar, compost, and mycorrhizal fungal amendments in post-mine sandpits. Restoration Ecology 26 (1):63–72. doi: 10.1111/rec.12528.
  • Olanrewaju, O. S., B. R. Glick, and O. O. Babalola. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33 (11):1–16. doi: 10.1007/s11274-017-2364-9.
  • Oldroyd, G. E., J. D. Murray, P. S. Poole, and J. A. Downie. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics 45:119–44. doi: 10.1146/annurev-genet-110410-132549.
  • Orhan, E., A. Esitken, S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae 111 (1):38–43. doi: 10.1016/j.scienta.2006.09.002.
  • Pal, A., and H. Kumar. 2001. Excess molar volumes and viscosities of binary liquid mixtures of (polyether + ester) systems at 298.15, 308.15, and 318.15 K. Fluid Phase Equilibria 181 (1-2):17–32. doi: 10.1016/S0378-3812(00)00509-4.
  • Palumbo, J. D., G. Y. Yuen, and C. C. Jochum. 2005. Mutagenesis of Beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet.
  • Paz-Ferreiro, J., H. Lu, S. Fu, A. Mendez, and G. Gasco. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 5 (1):65–75. doi: 10.5194/se-5-65-2014.
  • Pereira, A. 2016. Plant abiotic stress challenges from the changing environment. Frontiers in Plant Science 7:1123. doi: 10.3389/fpls.2016.01123.
  • Pereira, I., R. Ortega, L. Barrientos, M. Moya, G. Reyes, and V. Kramm. 2009. Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of Applied Phycology 21 (1):135–44. doi: 10.1007/s10811-008-9342-4.
  • Pii, Y., A. Penn, R. Terzano, C. Crecchio, T. Mimmo, and S. Cesco. 2015. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry: PPB 87:45–52. doi: 10.1016/j.plaphy.2014.12.014.
  • Prajapati, K., and H. Soni. 2021. Screening and characterization of rhizospheric phosphate solubilizing bacteria and their growth promoting effect on Mung bean (Vigna radiata). International Journal of Advanced Research in Biological Sciences 8 (4):6–18.
  • Prasad, M., M. Chaudhary, M. Choudhary, T. K. Kumar, and L. K. Jat. 2017. Rhizosphere microorganisms towards soil sustainability and nutrient acquisition. In Agriculturally important microbes for sustainable agriculture, 31–49. Singapore: Springer.
  • Prasad, M., R. Srinivasan, M. Chaudhary, M. Choudhary, and L. K. Jat. 2019. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Perspectives and challenges. In PGPR amelioration in sustainable agriculture, 129–57. Sawston, United Kingdom: Woodhead Publishing.
  • Purwanto, P., Y. Yuwariah, S. Sumadi, and T. Simarmata. 2016. Nitrogenase activity and IAA production of indigenous diazotroph and its effect on rice seedling growth. AGRIVITA. Journal of Agricultural Science 39 (1):31–7.
  • Rabie, G. H. 2005. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15 (3):225–30. doi: 10.1007/s00572-004-0345-y.
  • Radhakrishnan, R., and I. J. Lee. 2016. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry: PPB 109:181–9. doi: 10.1016/j.plaphy.2016.09.018.
  • Ramadan, E. M., A. A. AbdelHafez, E. A. Hassan, and F. M. Saber. 2016. Plant growth-promoting rhizobacteria and their potential for biocontrol of phytopathogens. African Journal of Microbiology Research 10:486–504.
  • Ramey, B. E., A. G. Matthysse, and C. Fuqua. 2004. The FNR‐type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Molecular Microbiology 52 (5):1495–511. doi: 10.1111/j.1365-2958.2004.04079.x.
  • Rashid, M. H. O., M. Krehenbrink, and M. S. Akhtar. 2015. Nitrogen-fixing plant-microbe symbioses. In Sustainable agriculture reviews, 193–234. Cham: Springer.
  • Raza, W., S. Yousaf, and F. U. Rajer. 2016. Plant growth promoting activity of volatile organic compounds produced by biocontrol strains. Science Letters 4 (1):40–3.
  • Reis, V. M., J. R. A. Bruno, A. Hartmann, E. K. James, and J. E. Zilli. 2020. Beneficial microorganisms in agriculture: The future of plant growth-promoting rhizobacteria. Plant and Soil 451 (1-2):1–3. doi: 10.1007/s11104-020-04482-8.
  • Riaz, U., G. Murtaza, W. Anum, T. Samreen, M. Sarfraz, and M. Z. Nazir. 2021. Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. In Microbiota and biofertilizers, 181–96. Cham: Springer.
  • Riefler, M., O. Novak, M. Strnad, and T. Schmülling. 2005. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell 18 (1):40–54. doi: 10.1105/tpc.105.037796.
  • Rodríguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287 (1–2):15–21. doi: 10.1007/s11104-006-9056-9.
  • Roper, M. M., and V. V. S. R. Gupta. 2016. Enhancing non-symbiotic N2 fixation in agriculture. The Open Agriculture Journal 10 (1):7–27. doi: 10.2174/1874331501610010007.
  • Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei, P. W. Paré, and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences 100 (8):4927–32. doi: 10.1073/pnas.0730845100.
  • Saghafi, D., M. Ghorbanpour, H. S. Ajirloo, and B. A. Lajayer. 2019. Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant Rhizobium strains containing ACC-deaminase activity. Plant Physiology Reports 24 (2):225–35. doi: 10.1007/s40502-019-00444-0.
  • Saha, M., S. Sarkar, B. Sarkar, B. K. Sharma, S. Bhattacharjee, and P. Tribedi. 2016. Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research International 23 (5):3984–99.
  • Saleh-Lakha, S., and B. R. Glick. 2006. Plant growth-promoting bacteria. In Modern Soil Microbiology, edited by J. D. van Elsas, J. K. Jansson, and J. T. Trevors, 503-520. Boca Raton, FL/ UK: CRC/ Thomsan Publishing.
  • Sansinenea, E. 2019. Bacillus spp.: As plant growth-promoting bacteria. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 225–37. Berlin Germany: Springer Nature.
  • Santoro, M., L. Cappellari, W. Giordano, and E. Banchio. 2015. Production of volatile organic compounds in PGPR. In Handbook for Azospirillum, 307–17. Cham: Springer.
  • Santoyo, G., J. M. Sánchez-Yáñez, and S. de los SantosVillalobos. 2019. Methods for detecting biocontrol and plant growth-promoting traits in Rhizobacteria. In Methods in rhizosphere biology research, 133–49. Singapore: Springer.
  • Santoyo, G., C. A. Urtis-Flores, P. D. Loeza-Lara, M. Orozco-Mosqueda, and B. R. Glick. 2021. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10 (6):475. doi: 10.3390/biology10060475.
  • Saravanan, V. S., S. R. Subramoniam, and S. A. Raj. 2004. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazilian Journal of Microbiology 35 (1–2):121–5. doi: 10.1590/S1517-83822004000100020.
  • Sattar, A., M. Naveed, M. Ali, Z. A. Zahir, S. M. Nadeem, M. Yaseen, V. S. Meena, M. Farooq, R. Singh, M. Rahman, et al. 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology 133:146–59. doi: 10.1016/j.apsoil.2018.09.012.
  • Satyaprakash, M., T. Nikitha, E. U. B. Reddi, B. Sadhana, and S. S. Vani. 2017. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences 6 (4):2133–44.
  • Sayyed, R. Z., ed. 2019. Plant growth promoting rhizobacteria for sustainable stress management: Vol. 2: Rhizobacteria in biotic stress management. Vol. 13. Berlin, Germany: Springer Nature.
  • Schalk, I. J., and G. L. Mislin. 2017. Bacterial iron uptake pathways: Gates for the import of bactericide compounds. doi: 10.1021/acs.jmedchem.7b00554.
  • Schulz, S., and J. S. Dickschat. 2007. Bacterial volatiles: The smell of small organisms. Natural Product Reports 24 (4):814–42. doi: 10.1039/b507392h.
  • Seefeldt, L. C., B. M. Hoffman, J. W. Peters, S. Raugei, D. N. Beratan, E. Antony, and D. R. Dean. 2018. Energy transduction in nitrogenase. Accounts of Chemical Research 51 (9):2179–86. doi: 10.1021/acs.accounts.8b00112.
  • Shah, F., and W. Wu. 2019. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11 (5):1485. doi: 10.3390/su11051485.
  • Shahid, M., A. A. Shah, F. Basit, M. Noman, M. Zubair, T. Ahmed, T. Naqqash, I. Manzoor, and A. Maqsood. 2020. Achromobacter sp. FB-14 harboring ACC deaminase activity augmented rice growth by upregulating the expression of stress-responsive CIPK genes under salinity stress. Brazilian Journal of Microbiology 51 (2):719–28.
  • Shaikh, S. S., R. Z. Sayyed, and M. S. Reddy. 2016. Plant growth-promoting rhizobacteria: An eco-friendly approach for sustainable agroecosystem. In Plant, soil and microbes, 181–201. Cham: Springer.
  • Sharma, A., D. Shankhdhar, and S. C. Shankhdhar. 2014. Growth promotion of the rice genotypes by PGPRs isolated from rice rhizosphere. Journal of Soil Science and Plant Nutrition 14 (2):505–17.
  • Sharma, A., D. Shankhdhar, and S. C. Shankhdhar. 2016. Potassium-solubilizing microorganisms: Mechanism and their role in potassium solubilization and uptake. In Potassium solubilizing microorganisms for sustainable agriculture, 203–19. New Delhi: Springer.
  • Sharma, I. P., S. Chandra, N. Kumar, and D. Chandra. 2017. PGPR: Heart of soil and their role in soil fertility. In Agriculturally important microbes for sustainable agriculture, 51–67. Singapore: Springer.
  • Sharma, P., P. P. Verma, and M. Kaur. 2017. Phytohormones production and phosphate solubilization capacities of fluorescent Pseudomonas sp. isolated from Shimla Dist. of Himachal Pradesh. IJCMAS 6:2447–54.
  • Sharma, S. B., R. Z. Sayyed, M. H. Trivedi, and T. A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2 (1):1–14. doi: 10.1186/2193-1801-2-587.
  • Shin, W., R. Islam, A. Benson, M. M. Joe, K. Kim, S. Gopal, S. Samaddar, S. Banerjee, and T. Sa. 2016. Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement. Korean Journal of Soil Science and Fertilizer 49 (1):17–29. doi: 10.7745/KJSSF.2016.49.1.017.
  • Silvie, P., J. P. Deguine, S. Nibouche, B. Michel, and M. Vaissayre. 2001. Potential of threshold-based interventions for cotton pest control by small farmers in West Africa. Crop Protection 20 (4):297–301. doi: 10.1016/S0261-2194(00)00146-0.
  • Sindhu, S. S., P. Parmar, M. Phour, and A. Sehrawat. 2016. Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In Potassium solubilizing microorganisms for sustainable agriculture, 171–85. New Delhi: Springer.
  • Singh, H., J. S. Khattar, and A. S. Ahluwalia. 2014. Cyanobacteria and agricultural crops. Vegetos- An International Journal of Plant Research 27 (1):37–44. doi: 10.5958/j.2229-4473.27.1.008.
  • Singh, J., P. Singh, S. Ray, R. S. Rajput, and H. B. Singh. 2019. Plant growth-promoting rhizobacteria: Benign and useful substitute for mitigation of biotic and abiotic stresses. In Plant growth promoting rhizobacteria for sustainable stress management, 81–101. Singapore: Springer.
  • Solano, B. R., J. B. Maicas, and F. G. Mañero. 2008. Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). Plant-Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley, Weinheim, Germany: 41–52.
  • Somers, E., J. Vanderleyden, and M. Srinivasan. 2004. Rhizosphere bacterial signalling: A love parade beneath our feet. Critical Reviews in Microbiology 30 (4):205–40. doi: 10.1080/10408410490468786.
  • Son, J. S., M. Sumayo, Y. J. Hwang, B. S. Kim, and S. Y. Ghim. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Applied Soil Ecology 73:1–8. doi: 10.1016/j.apsoil.2013.07.016.
  • Soumare, A., A. G. Diedhiou, M. Thuita, M. Hafidi, Y. Ouhdouch, S. Gopalakrishnan, and L. Kouisni. 2020. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants 9 (8):1011. doi: 10.3390/plants9081011.
  • Spaepen, S., and J. Vanderleyden. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology 3 (4):a001438–a001438. doi: 10.1101/cshperspect.a001438.
  • Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31 (4):425–48. doi: 10.1111/j.1574-6976.2007.00072.x.
  • Sutherland, I. W. 2001. The biofilm matrix–an immobilized but dynamic microbial environment. Trends in Microbiology 9 (5):222–7. doi: 10.1016/s0966-842x(01)02012-1.
  • Suzaki, T., N. Takeda, H. Nishida, M. Hoshino, M. Ito, F. Misawa, Y. Handa, K. Miura, and M. Kawaguchi. 2019. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics 15 (1):e1007865. doi: 10.1371/journal.pgen.1007865.
  • Sziderics, A. H., F. Rasche, F. Trognitz, A. Sessitsch, and E. Wilhelm. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology 53 (11):1195–202.
  • Tak, H. I., F. Ahmad, and O. O. Babalola. 2013. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Reviews of Environmental Contamination and Toxicology 223:33–52.
  • Tan, K. Z., O. Radziah, M. S. Halimi, A. R. Khairuddin, and Z. H. Shamsuddin. 2015. Assessment of plant growth-promoting rhizobacteria (PGPR) and rhizobia as multi-strain biofertilizer on growth and N2 fixation of rice plant. Australian Journal of Crop Science 9 (12):1257–64.
  • Tank, N., and M. Saraf. 2010. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions 5 (1):51–8. doi: 10.1080/17429140903125848.
  • Tariq, M., S. Yasmin, and F. Y. Hafeez. 2010. Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology 41 (2):439–51. doi: 10.1590/S1517-838220100002000026.
  • Tennakoon, P. L. K., R. M. C. P. Rajapaksha, and L. S. K. Hettiarachchi. 2019. Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application. Rhizosphere 10:100146. doi: 10.1016/j.rhisph.2019.100146.
  • Tewari, S., and N. K. Arora. 2013. Transactions among microorganisms and plant in the composite Rhizosphere habitat. In Plant microbe symbiosis: Fundamentals and advances, ed. K. A. Naveen, 1–50. New Delhi: Springer.
  • Thijs, S., W. Sillen, F. Rineau, N. Weyens, and J. Vangronsveld. 2016. Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology 7:341. doi: 10.3389/fmicb.2016.00341.
  • Timmusk, S., L. Behers, J. Muthoni, A. Muraya, and A. C. Aronsson. 2017. Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science 8:49. doi: 10.3389/fpls.2017.00049.
  • Trapet, P., L. Avoscan, A. Klinguer, S. Pateyron, S. Citerne, C. Chervin, S. Mazurier, P. Lemanceau, D. Wendehenne, and A. Besson-Bard. 2016. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiology 171 (1):675–93. doi: 10.1104/pp.15.01537.
  • Vamerali, T., M. Bandiera, and G. Mosca. 2010. Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters 8 (1):1–17. doi: 10.1007/s10311-009-0268-0.
  • Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research, 243–54. Dordrecht: Springer.
  • Van Wees, S. C., E. A. De Swart, J. A. Van Pelt, L. C. Van Loon, and C. M. Pieterse. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 97 (15):8711–6. doi: 10.1073/pnas.130425197.
  • Vanhaverbeke, C., A. Heyraud, and K. Mazeau. 2003. Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: Impact on the interaction with soils. Biopolymers 69 (4):480–97. doi: 10.1002/bip.10432.
  • Vaxevanidou, K., C. Christou, G. F. Kremmydas, D. G. Georgakopoulos, and N. Papassiopi. 2015. Role of indigenous arsenate and iron (III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample. Bulletin of Environmental Contamination and Toxicology 94 (3):282–8. doi: 10.1007/s00128-015-1458-z.
  • Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A. Nasrulhaq Boyce. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 21 (5):573. doi: 10.3390/molecules21050573.
  • Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255 (2):571–86. doi: 10.1023/A:1026037216893.
  • Vidhyasekaran, P., and M. Muthamilan. 1999. Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Science and Technology.9 (1):67–74. doi: 10.1080/09583159929910.
  • Vitousek, P. M., and P. A. Matson. 2012. Nutrient cycling and biogeochemistry. The Princeton Guide to Ecology, 330–339. Berlin, Germany: De Gruyter.
  • Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Synergistic effects of the inoculation with nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on the performance of field‐grown chickpea. Journal of Plant Nutrition and Soil Science 170 (2):283–7. doi: 10.1002/jpln.200620602.
  • Weber, O., J. Delince, Y. Duan, L. Maene, T. McDaniels, M. Mew, and G. Steiner. 2014. Trade and finance as cross-cutting issues in the global phosphate and fertilizer market. In Sustainable phosphorus management, 275–99. Dordrecht, Netherlands: Springer.
  • Wei, G., J. W. Kloepper, and S. Tuzun. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86 (2):221–4. doi: 10.1094/Phyto-86-221.
  • Wu, C. H., T. K. Wood, A. Mulchandani, and W. Chen. 2006. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology 72 (2):1129–34. doi: 10.1128/AEM.72.2.1129-1134.2006.
  • Wyngaard, N., M. L. Cabrera, K. A. Jarosch, and E. K. Bünemann. 2016. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biology and Biochemistry 96:107–18. doi: 10.1016/j.soilbio.2016.01.022.
  • Yang, J., J. W. Kloepper, and C. M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science 14 (1):1–4. doi: 10.1016/j.tplants.2008.10.004.
  • Yasmin, F., R. Othman, H. Vijayan, and N. Mhm. 2021. Response of sweet potato to application of Pgpr and N fertilizer. Annals of the Romanian Society for Cell Biology 25 (4): 10799–812.
  • Yuan, Y., D. Chu, J. Fan, P. Zou, Y. Qin, Y. Geng, Z. Cui, X. Wang, C. Zhang, X. Li, et al. 2021. Ecofriendly conversion of algal waste into valuable plant growth-promoting rhizobacteria (PGPR) biomass. Waste Management 120:576–84. doi: 10.1016/j.wasman.2020.10.020.
  • Yuwono, T., D. Handayani, and J. Soedarsono. 2005. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Australian Journal of Agricultural Research 56 (7):715–21. doi: 10.1071/AR04082.
  • Zafar-Ul-Hye, M., M. Naeem, S. Danish, M. J. Khan, S. Fahad, R. Datta, M. Brtnicky, A. Kintl, G. S. Hussain, and M. A. El-Esawi. 2020. Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants 9 (10):1386. doi: 10.3390/plants9101386.
  • Zaidi, A., M. Khan, M. Ahemad, and M. Oves. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica 56 (3):263–84.
  • Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64 (6):991–7. doi: 10.1016/j.chemosphere.2005.12.057.
  • Zerrouk, I. Z., B. Rahmoune, S. Auer, S. Rößler, T. Lin, F. Baluska, P. I. Dobrev, V. Motyka, and J. Ludwig-Müller. 2020. Growth and aluminum tolerance of maize roots mediated by auxin-and cytokinin-producing Bacillus toyonensis requires polar auxin transport. Environmental and Experimental Botany 176:104064. doi: 10.1016/j.envexpbot.2020.104064.
  • Zhang, S., M. S. Reddy, and J. W. Kloepper. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant and Soil 262 (1/2):277–88. doi: 10.1023/B:PLSO.0000037048.26437.fa.
  • Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International 33 (3):406–13. doi: 10.1016/j.envint.2006.12.005.
  • Zimina, M., O. Babich, A. Prosekov, S. Sukhikh, S. Ivanova, M. Shevchenko, and S. Noskova. 2020. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 9 (9):553. doi: 10.3390/antibiotics9090553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.