406
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Excess boron stress and alleviation of its toxicity in plants: mechanisms and strategies

ORCID Icon, , &
Pages 2724-2746 | Received 27 Dec 2021, Accepted 05 Oct 2022, Published online: 28 Dec 2022

References

  • Acosta-Estrada, B. A., J. A. Gutiérrez-Uribe, and S. Serna-Saldívar. 2014. Bound phenolics in foods, a review. Food Chemistry 152:46–55. ‏ doi: 10.1016/j.foodchem.2013.11.093.
  • Aftab, T., M. M. A. Khan, M. Idrees, M. Naeem, N., and Hashmi, Moinuddin. 2011. Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248 (3):601–12. ‏ doi: 10.1007/s00709-010-0218-5.
  • Akcay, U., and I. Erkan. 2016. Silicon induced antioxidative responses and expression of BOR2 and two PIP family aquaporin genes in barley grown under boron toxicity. Plant Molecular Biology Reporter 34 (1):318–26. doi: 10.1007/s11105-015-0923-5.
  • Akram, N., F. Shafiq, and M. Ashraf. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science 8:613.‏ doi: 10.3389/fpls.2017.00613.
  • Anjum, S., L. Xue, L. Wang, M. Saleem, and C. Huang. 2013. Exogenous benzoic acid (BZA) treatment can induce drought tolerance in soybean plants by improving gas-exchange and chlorophyll contents. Australian Journal of Crop Science 7 (5):555–60. ‏
  • Aquea, F., F. Federici, C. Moscoso, A. Vega, P. Jullian, J. Haseloff, and P. Arce‐Johnson. 2012. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant, Cell & Environment 35 (4):719–34. ‏ doi: 10.1111/j.1365-3040.2011.02446.x.
  • Ayvaz, M., A. Guven, O. Blokhina, and K. Fagerstedt. 2016. Boron stress, oxidative damage and antioxidant protection in potato cultivars (Solanum tuberosum L.). Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 66 (4):302–16. ‏ doi: 10.1080/09064710.2015.1109133.
  • Baes, C. F. Jr., and R. E. Mesmer. 1976. The hydrolysis of cations, 104–11. John Wiley & Sons. Inc.
  • Bajguz, A., and S. Hayat. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry : PPB 47 (1):1–8. ‏ doi: 10.1016/j.plaphy.2008.10.002.
  • Balal, R., M. Shahid, M. Javaid, Z. Iqbal, G. Liu, L. Zotarelli, and N. Khan. 2017. Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiologiae Plantarum 39 (1):1–15. ‏ doi: 10.1007/s11738-016-2335-z.
  • Bassil, E., H. Hu, and P. H. Brown. 2004. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiology 136 (2):3383–95. ‏ doi: 10.1104/pp.104.040527.
  • Batistič, O., and J. Kudla. 2010. Calcium: Not just another ion. In Cell biology of metals and nutrients. Plant cell monographs 17, ed. R. Hell and R. R. Mendel, 17–54. Berlin: Springer.
  • Bell, R. W., and B. Dell. 2008. Micronutrients for sustainable food, feed, fibre and bioenergy production. Paris, France: International Fertilizer Industry Association (IFA).‏
  • Bergmann, W. 1992. Nutritional disorders of plants. Stuttgart: Gustav Fisher Verlag.
  • Bhuyan, D., and A. Basu. 2017. Utilisation of bioactive compounds derived from waste in the food industry. In Utilisation of bioactive compounds from agricultural and food production waste, ed. Q. V. Vuong, 342–57. Boca Ratón, FL: CRC Press.
  • Bienert, M. D., and G. P. Bienert. 2017. Plant aquaporins and metalloids. In Plant aquaporins, ed. F. Chaumont and S. Tyerman, 297–332. Cham: Springer.
  • ‏Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 91 (2):179–94. ‏ doi: 10.1093/aob/mcf118.
  • Bowen, J. E., and H. G. Gauch. 1965. The essentialty of boron for Dryopteris dentata and Selaginella apoda. American Fern Journal 55 (2):67–73. ‏ doi: 10.2307/1546138.
  • Brdar-Jokanović, M. 2020. Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences 21 (4):1424. ‏ doi: 10.3390/ijms21041424.
  • Brown, P. H., and H. Hu. 1996. Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species. Annals of Botany 77 (5):497–506. ‏ doi: 10.1006/anbo.1996.0060.
  • Brown, P. H., N. Bellaloui, M. A. Wimmer, E. S. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel, and V. Römheld. 2002. Boron in plant biology. Plant Biology 4 (2):205–23. ‏ doi: 10.1055/s-2002-25740.
  • Bujor, O., I. Talmaciu, I. Volf, and V. Popa. 2015. Biorefining to recover aromatic compounds with biological properties. TAPPI Journal 14 (3):187–93. ‏ doi: 10.32964/TJ14.3.187.
  • Caleja, C., A. Ribeiro, M. F. Barreiro, and I. C. F. R. Ferreira. 2017. Phenolic compounds as nutraceuticals or functional food ingredients. Current Pharmaceutical Design 23 (19):2787–806. ‏ doi: 10.2174/1381612822666161227153906.
  • Camacho-Cristóbal, J., M. Navarro-Gochicoa, J. Rexach, A. González-Fontes, and M. Herrera-Rodríguez. 2018. Plant response to boron deficiency and boron use efficiency in crop plants. In Plant micronutrient use efficiency, 109–21. Academic Press.
  • Carocho, M., and I. Ferreira. 2013. The role of phenolic compounds in the fight against cancer–a review. Anti-Cancer Agents in Medicinal Chemistry 13 (8):1236–58. ‏ doi: 10.2174/18715206113139990301.
  • Caverzan, A., A. Casassola, and S. Brammer. 2016. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In Abiotic and biotic stress in plants-recent advances and future perspectives, ed. A. K. Shanker and C. Shanker, 463–80. InTech. ‏
  • Cervilla, L. M., B. Blasco, J. J. Rios, M. A. Rosales, E. Sánchez-Rodríguez, M. M. Rubio-Wilhelmi, L. Romero, and J. M. Ruiz. 2012. Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany 2012:1–17. doi: 10.1155/2012/726206.
  • Cervilla, L. M., B. Blasco, J. J. Ríos, M. A. Rosales, M. M. Rubio-Wilhelmi, E. Sánchez-Rodríguez, L. Romero, and J. M. Ruiz. 2009. Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biology (Stuttgart, Germany) 11 (5):671–7. ‏ doi: 10.1111/j.1438-8677.2008.00167.x.
  • Chauhan, A., B. AbuAmarah, A. Kumar, J. Verma, H. Ghramh, K. Khan, and M. Ansari. 2019. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Sciences 26 (6):1298–304. doi: 10.1016/j.sjbs.2019.04.014.
  • Chen, M., S. Mishra, S. Heckathorn, J. Frantz, and C. Krause. 2014. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. Journal of Plant Physiology 171 (3-4):235–42. ‏ doi: 10.1016/j.jplph.2013.07.008.
  • Chen, Z., A. Taylor, S. Astor, J. Xin, and N. Terry. 2017. Removal of boron from wastewater: Evaluation of seven poplar clones for B accumulation and tolerance. Chemosphere 167:146–54. ‏ doi: 10.1016/j.chemosphere.2016.09.137.
  • Cheynier, V., G. Comte, K. Davies, V. Lattanzio, and S. Martens. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry : PPB 72:1–20. ‏ doi: 10.1016/j.plaphy.2013.05.009.
  • Choi, E. Y., H. Park, J. Ju, and Y. Yoon. 2015. Boron availability alters its distribution in plant parts of tomato. Horticulture, Environment, and Biotechnology 56 (2):145–51. ‏ doi: 10.1007/s13580-015-0044-y.
  • Choudhary, S., A. Zehra, M. Naeem, M. Khan, and T. Aftab. 2020. Effects of boron toxicity on growth, oxidative damage, antioxidant enzymes and essential oil fingerprinting in Mentha arvensis and Cymbopogon flexuosus. Chemical and Biological Technologies in Agriculture 7 (1):1–11. ‏ doi: 10.1186/s40538-019-0175-y.
  • Coudray, N., S. L Seyler, R. Lasala, Z. Zhang, K. M. Clark, M. E. Dumont, A. Rohou, O. Beckstein, and D. L. Stokes. 2017. Structure of the SLC4 transporter Bor1p in an inward‐facing conformation. Protein Science : A Publication of the Protein Society 26 (1):130–45. ‏ doi: 10.1002/pro.3061.
  • Crawford, N. M. 1995. Nitrate: Nutrient and signal for plant growth. The Plant Cell 7 (7):859–68. doi: 10.1105/tpc.7.7.859.
  • Das, A., and A. Purkait. 2020. Boron dynamics in soil: Classification, sources, factors, fractions, and kinetics. Communications in Soil Science and Plant Analysis 51 (22):2778–90. ‏ doi: 10.1080/00103624.2020.1849261.
  • Das, K., and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53. ‏ doi: 10.3389/fenvs.2014.00053.
  • de Pinto, M., and L. De Gara. 2004. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany 55 (408):2559–69. ‏ doi: 10.1093/jxb/erh253.
  • Dell, B., and L. Huang. 1997. Physiological response of plants to low boron. Plant and Soil 193 (2):103–20. ‏ doi: 10.1023/A:1004264009230.
  • Dhillon, G. S., S. Kaur, S. K. Brar, and M. Verma. 2013. Green synthesis approach: Extraction of chitosan from fungus mycelia. Critical Reviews in Biotechnology 33 (4):379–403. ‏ doi: 10.3109/07388551.2012.717217.
  • Donati, A., H. Lee, J. Leveau, and W. Chang. 2013. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PloS One 8 (10): E 76559. ‏ doi: 10.1371/journal.pone.0076559.
  • El Gamal, T., and N. Zaki. 2017. Egyptian irrigation after the Aswan high dam. In Irrigated agriculture in Egypt, 47–79. Cham: Springer.‏
  • Elbehiry, F., H. Elbasiouny, and A. El-Henawy. 2017. Boron: Spatial distribution in an area of North Nile Delta, Egypt. Communications in Soil Science and Plant Analysis 48 (3):294–306. ‏ doi: 10.1080/00103624.2016.1269795.
  • El-Feky, S. S., F. A. El-Shintinawy, E. M. Shaker, and H. A. Shams El-Din. 2012. Effect of elevated boron concentrations on the growth and yield of barley ('Hordeum vulgare’ L.) and alleviation of its toxicity using different plant growth modulators. Australian Journal of Crop Science 6 (12):1687–95. ‏
  • El-Kholi, A., A. El-Damaty, and H. Hamdi. 1970. Interrelationship between soil properties and soluble boron. Journal of Soil Science of the United Arab Republic 10:267–79. ‏
  • El-Shazoly, R. M., A. A. Metwally, and A. M. Hamada. 2019. Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. Journal of Plant Nutrition 42 (7):702–22. ‏ doi: 10.1080/01904167.2018.1549670.
  • Esmaeili, A., R. Taha, S. Mohajer, and B. Banisalam. 2015. 2015. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L.(Red Clover). BioMed Research International 2015:643285. ‏ doi: 10.1155/2015/643285.
  • Etesami, H. 2020. Plant–microbe interactions in plants and stress tolerance. In Plant life under changing environment, 355–96. Academic Press.
  • Fang, Y. H. 2001. Study on effect of high boron stress on photosynthesis of oilseed rape. Plant Nutrition and Fertilizer Science 7:109–12. ‏
  • Farag, M., U. Najeeb, J. Yang, Z. Hu, and Z. Fang. 2017. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Plant Physiology and Biochemistry : PPB 111:166–73. ‏ doi: 10.1016/j.plaphy.2016.11.024.
  • Farghaly, F. A., H. Salam, A. M. Hamada, and A. A. Radi. 2021. The role of benzoic acid, gallic acid and salicylic acid in protecting tomato callus cells from excessive boron stress. Scientia Horticulturae 278:109867. ‏ doi: 10.1016/j.scienta.2020.109867.
  • Fleming, G. 1980. Essential micronutrients I: boron and molybdenum. In Applied Soil Trace Elements, ed. Davies, B.E, 155-197. Great Britain: John Wiley & Sons.
  • Genisel, M., H. Turk, and R. Dumlupinar. 2017. Exogenous aminolevulinic acid protects wheat seedlings against boron-induced oxidative stress. Romanian Biotechnological Letters 22 (4):12741–50. ‏
  • Ghanati, F., A. Morita, and H. Yokota. 2005. Deposition of suberin in roots of soybean induced by excess boron. Plant Science 168 (2):397–405. ‏ doi: 10.1016/j.plantsci.2004.09.004.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry : PPB 48 (12):909–30. ‏ doi: 10.1016/j.plaphy.2010.08.016.
  • Göbel, C., and I. Feussner. 2009. Methods for the analysis of oxylipins in plants. Phytochemistry 70 (13–14):1485–503. ‏ doi: 10.1016/j.phytochem.2009.07.040.
  • Goldbach, H. E., and M. A. Wimmer. 2007. Boron in plants and animals: Is there a role beyond cell‐wall structure? Journal of Plant Nutrition and Soil Science 170 (1):39–48. ‏ doi: 10.1002/jpln.200625161.
  • Goldberg, S. 1997. Reactions of boron with soils. Plant and Soil 193 (2):35–48. doi: 10.1023/A:1004203723343.
  • González-Fontes, A., M. Navarro-Gochicoa, J. Camacho-Cristóbal, M. Herrera-Rodríguez, C. Quiles-Pando, and J. Rexach. 2014. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. Plant Science 217–218:135–9. ‏ doi: 10.1016/j.plantsci.2013.12.011.
  • Gray, W. M. 2004. Hormonal regulation of plant growth and development. PLoS Biology 2 (9):e311. ‏ doi: 10.1371/journal.pbio.0020311.
  • Günes, A., and M. Alpaslan. 2000. Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. Journal of Plant Nutrition 23 (4):541–50. ‏ doi: 10.1080/01904160009382038.
  • Guo, P., Y. Qi, L. Yang, X. Ye, H. Jiang, J. Huang, and L. Chen. 2014. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC Plant Biology 14 (1):284. ‏ doi: 10.1186/s12870-014-0284-5.
  • Gupta, U. C. 1980. Boron nutrition of crops. Advances in Agronomy 31:273–307. ‏
  • Gupta, U. C., Y. W. Jame, C. A. Campbell, A. J. Leyshon, and W. Nicholaichuk. 1985. Boron toxicity and deficiency: A review. Canadian Journal of Soil Science 65 (3):381–409. ‏ doi: 10.4141/cjss85-044.
  • Hamada, A. M., and L. M. Jonsson. 2013. Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94:135–41. ‏ doi: 10.1016/j.phytochem.2013.05.012.
  • Han, S., N. Tang, H. X. Jiang, L. T. Yang, Y. Li, and L. S. Chen. 2009. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Science 176 (1):143–53. ‏ doi: 10.1016/j.plantsci.2008.10.004.
  • Hepler, P. K., L. Vidali, and A. Cheung. 2001. Polarized cell growth in higher plants. Annual Review of Cell and Developmental Biology 17 (1):159–87. ‏ doi: 10.1146/annurev.cellbio.17.1.159.
  • Hildebrandt, T., A. Nesi, W. Araújo, and H. Braun. 2015. Amino acid catabolism in plants. Molecular Plant 8 (11):1563–79. ‏ doi: 10.1016/j.molp.2015.09.005.
  • Hu, H., and P. H. Brown. 1997. Absorption of boron by plant roots. Plant and Soil 193 (2):49–58. ‏ doi: 10.1023/A:1004255707413.
  • Hu, Z., L. Weijian, F. Yali, and L. Huiquan. 2018. Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage. Scientia Horticulturae 237:184–91. ‏ doi: 10.1016/j.scienta.2018.04.018.
  • Hua, T., R. Zhang, H. Sun, and C. Liu. 2021. Alleviation of boron toxicity in plants: Mechanisms and approaches. Critical Reviews in Environmental Science and Technology 51 (24):2975–3015. doi: 10.1080/10643389.2020.1807451.
  • Huang, J., and S. S. Snapp. 2009. Potassium and boron nutrition enhance fruit quality in Midwest fresh market tomatoes. Communications in Soil Science and Plant Analysis 40 (11–12):1937–52. ‏ doi: 10.1080/00103620902896811.
  • Inal, A., D. J. Pilbeam, and A. Gunes. 2009. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Journal of Plant Nutrition 32 (1):112–28. ‏ doi: 10.1080/01904160802533767.
  • Jabłońska-Trypuć, A., M. Matejczyk, and R. Czerpak. 2016. N6-benzyladenine and kinetin influence antioxidative stress parameters in human skin fibroblasts. Molecular and Cellular Biochemistry 413 (1–2):97–107. ‏ doi: 10.1007/s11010-015-2642-5.
  • Jefferies, S. P., A. R. Barr, A. Karakousis, J. M. Kretschmer, S. Manning, K. J. Chalmers, and P. Langridge. 1999. Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 98 (8):1293–303. ‏
  • Jia, H., Y. Hu, T. Fan, and J. Li. 2015. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Scientific Reports 5 (1):8251–13. ‏ doi: 10.1038/srep08251.
  • Jones, W. W., T. W. Embleton, S. B. Boswell, M. L. Steinacker, B. W. Lee, and E. L. Barnhart. 1963. Nitrogen control programme for oranges and high sulphate and/or high boron. California Citrogr 48:128–9.
  • Jovelina da Silva, C., E. Fontes, and L. Modolo. 2017. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Science : An International Journal of Experimental Plant Biology 256:148–59. ‏ doi: 10.1016/j.plantsci.2016.12.011.
  • Karaman, M. R., M. Turan, A. Horuz, M. Ş. Tüfenkçi, and A. Adiloğlu. 2017. Interactive effects of boron and humic acid on the growth and nutrient status of maize plant (Zea mays L.). International Journal of Plant & Soil Science 19 (2):1–9. ‏ doi: 10.9734/IJPSS/2017/36430.
  • Kaya, C., A. Sarıoğlu, M. Ashraf, M. Alyemeni, and P. Ahmad. 2020. Gibberellic acid-induced generation of hydrogen sulfide alleviates boron toxicity in tomato (Solanum lycopersicum L.) plants. Plant Physiology and Biochemistry : PPB 153:53–63. ‏ doi: 10.1016/j.plaphy.2020.04.038.
  • Kaya, C., A. Sarioğlu, N. Akram, and M. Ashraf. 2019. Thiourea-mediated nitric oxide production enhances tolerance to boron toxicity by reducing oxidative stress in bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.) plants. Journal of Plant Growth Regulation 38 (3):1094–109. ‏ doi: 10.1007/s00344-019-09916-x.
  • Kaya, C., A. Tuna, M. Dikilitas, M. Ashraf, S. Koskeroglu, and M. Guneri. 2009. Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae 121 (3):284–8. ‏ doi: 10.1016/j.scienta.2009.02.011.
  • Kaya, C., N. Akram, and M. Ashraf. 2018. Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. Journal of Plant Growth Regulation 37 (4):1258–66. ‏ doi: 10.1007/s00344-018-9827-6.
  • Kayıhan, C., M. T. Öz, F. Eyidoğan, M. Yücel, and H. Öktem. 2017. Physiological, biochemical, and transcriptomic responses to boron toxicity in leaf and root tissues of contrasting wheat cultivars. Plant Molecular Biology Reporter 35 (1):97–109. ‏ doi: 10.1007/s11105-016-1008-9.
  • Keles, Y., I. Öncel, and N. Yenice. 2004. Relationship between boron content and antioxidant compounds in Citrus leaves taken from fields with different water source. Plant and Soil 265 (1–2):345–53. doi: 10.1007/s11104-005-0646-8.
  • Khan, M. I., M. Fatma, T. S. Per, N. A. Anjum, and N. A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6:462. ‏ doi: 10.3389/fpls.2015.00462.
  • Kick, K. 1963. On the nutrient content of Egyptian soils with particular reference to the micronutrients Cu, Zn, and B. Zeitschrift Für Pflanzenernährung, Düngung, Bodenkunde 100 (2):102–14. doi: 10.1002/jpln.19631000204.
  • Kieber, J., and G. Schaller. 2014. Cytokinins. The Arabidopsis Book 12:e0168. doi: 10.1199/tab.0168.
  • Klochko, K., A. J. Kaufman, W. Yao, R. H. Byrne, and J. A. Tossell. 2006. Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters 248 (1-2):276–85. ‏ doi: 10.1016/j.epsl.2006.05.034.
  • Koohkan, H., and M. Maftoun. 2015. Effect of nitrogen on the alleviation of boron toxicity in rice (Oryza sativa L). Journal of Plant Nutrition 38 (9):1323–35. ‏ doi: 10.1080/01904167.2014.991035.
  • Kumar, S., B. R. Arora, and H. S. Hundal. 1981. Potassium-boron synergism in the nutrition of rice (Oryza sativa). Journal of the Indian Society of Soil Science 29 (4):563–4. ‏
  • Kumar, V., A. Sharma, S. K. Kohli, S. Bali, M. Sharma, R. Kumar, R. Bhardwaj, and A. K. Thukral. 2019. Differential distribution of polyphenols in plants using multivariate techniques. Biotechnology Research and Innovation 3 (1):1–21. doi: 10.1016/j.biori.2019.03.001.
  • Landi, M., T. Margaritopoulou, I. E. Papadakis, and F. Araniti. 2019. Boron toxicity in higher plants: An update. Planta 250 (4):1011–32. ‏ doi: 10.1007/s00425-019-03220-4.
  • Lattanzio, V., A. Cardinali, C. Ruta, I. Fortunato, V. M. Lattanzio, V. Linsalata, and N. Cicco. 2009. Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environmental and Experimental Botany 65 (1):54–62. ‏ doi: 10.1016/j.envexpbot.2008.09.002.
  • Lecube, M., G. Noriega, D. Santa Cruz, M. Tomaro, A. Batlle, and K. Balestrasse. 2014. Indole acetic acid is responsible for protection against oxidative stress caused by drought in soybean plants: The role of heme oxygenase induction. Redox Report : Communications in Free Radical Research 19 (6):242–50. ‏ doi: 10.1179/1351000214Y.0000000095.
  • Lehto, T., T. Ruuhola, and B. Dell. 2010. Boron in forest trees and forest ecosystems. Forest Ecology and Management 260 (12):2053–69. ‏ doi: 10.1016/j.foreco.2010.09.028.
  • Lemarchand, D., J. Gaillardet, E. Lewin, and C. Allegre. 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408 (6815):951–4. ‏ doi: 10.1038/35050058.
  • Lewin, J. 1966. Boron as a growth requirement for diatoms. Journal of Phycology 2 (4):160–3. ‏ doi: 10.1111/j.1529-8817.1966.tb04616.x.
  • Lewis, D. H. 2019. Boron: The essential element for vascular plants that never was. The New Phytologist 221 (4):1685–90. ‏ doi: 10.1111/nph.15519.
  • Li, J., K. Zhang, Y. Meng, J. Hu, M. Ding, J. Bian, M. Yan, J. Han, and M. Zhou. 2018. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA 59 transcription factor. The Plant Journal : For Cell and Molecular Biology 95 (3):444–57. ‏ doi: 10.1111/tpj.13960.
  • Liakopoulos, G., S. Stavrianakou, M. Filippou, C. Fasseas, C. Tsadilas, I. Drossopoulos, and G. Karabourniotis. 2005. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations. Tree Physiology 25 (2):157–65. ‏ doi: 10.1093/treephys/25.2.157.
  • Lisko, K., S. Aboobucker, R. Torres, and A. Lorence. 2014. Engineering elevated vitamin C in plants to improve their nutritional content, growth, and tolerance to abiotic stress. In Phytochemicals–biosynthesis, function and application, 109–28. doi: 10.1007/978--3-319-04045-5_6
  • Liu, C., W. Lu, Q. Ma, and C. Ma. 2017. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. Journal of Plant Nutrition 40 (17):2458–67. ‏ doi: 10.1080/01904167.2017.1380817.
  • Liu, D., W. Jiang, L. Zhang, and L. Lufang. 2000. Effects of boron ions on root growth and cell division of broadbean (Vicia faba L.). Israel Journal of Plant Sciences 48 (1):47–51. ‏ doi: 10.1560/C74E-VYKD-FKYK-TQWK.
  • Lopes, M. J., M. Dias-Filho, and E. Gurgel. 2021. Successful plant growth-promoting microbes: Inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems 5:48. ‏ doi: 10.3389/fsufs.2021.606454.
  • Ludbrook, W. V. 1942. Effects of various concentrations of boron on the growth of pine seedlings. The Journal of the Australian Institute of Agricultural Science 8:112–4.
  • Ma, J., and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11 (8):392–7. ‏ doi: 10.1016/j.tplants.2006.06.007.
  • Ma, J., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. Studies in Plant Science 8:17–39. ‏
  • Marco, F., M. Bitrián, P. Carrasco, M. Rajam, R. Alcázar, and A. Tiburcio. 2015. Genetic engineering strategies for abiotic stress tolerance in plants. In Plant biology and biotechnology, 579–609. New Delhi: Springer. doi: 10.1007/978-81-322-2283-5_29
  • Marschner, H. 1995. Function of mineral nutrients: Micronutrients. In Mineral nutrition of higher plants.‏ 2nd ed., 313–404. London: Academic Press. doi: 10.1016/C2009-0-63043-9
  • Masood, A., M. Khan, M. Fatma, M. Asgher, T. Per, and N. Khan. 2016. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiology and Biochemistry : PPB 104:1–10. ‏ doi: 10.1016/j.plaphy.2016.03.017.
  • Mathai, J., A. Missner, P. Kügler, S. Saparov, M. Zeidel, J. Lee, and P. Pohl. 2009. No facilitator required for membrane transport of hydrogen sulfide. Proceedings of the National Academy of Sciences of the United States of America 106 (39):16633–8. ‏ doi: 10.1073/pnas.0902952106.
  • Matoh, T. 1997. Boron in plant cell walls. Plant and Soil 193 (2):59–70. ‏ doi: 10.1023/A:1004207824251.
  • Matoh, T., and M. Kobayashi. 1998. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. Journal of Plant Research 111 (1):179–90. ‏ doi: 10.1007/BF02507164.
  • Mattila, P., and J. Kumpulainen. 2002. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry 50 (13):3660–7. ‏ doi: 10.1021/jf020028p.
  • Matysiak, K., R. Kierzek, I. Siatkowski, J. Kowalska, R. Krawczyk, and W. Miziniak. 2020. Effect of exogenous application of amino acids l-arginine and glycine on maize under temperature stress. Agronomy 10 (6):769. ‏ doi: 10.3390/agronomy10060769.
  • Mazé, P. 1915. Determination des éléments minéraux rares nécessaires as dévelopment du maïs. Comptes rendus de l'Académie des Sciences 160:211–4.
  • McDonald, G., J. Eglinton, and A. Barr. 2010. Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.). Plant and Soil 326 (1–2):275–90. ‏ doi: 10.1007/s11104-009-0006-1.
  • Meister, A., and M. Anderson. 1983. Glutathione. Annual Review of Biochemistry 52 (1):711–60. ‏ doi: 10.1146/annurev.bi.52.070183.003431.
  • Mengel, K., and E. Kirkby. 2001. Principles of plant nutrition. 5th ed. Dordrecht: Kluwer Academic Publishers, 849.
  • Meriño-Gergichevich, C., A. Luengo-Escobar, D. Alarcón, M. Reyes-Díaz, G. Ondrasek, F. Morina, and K. Ogass. 2021. Combined spraying of boron and zinc during fruit set and premature stage improves yield and fruit quality of European hazelnut cv. Tonda di Giffoni. Frontiers in Plant Science 12:661542. ‏ doi: 10.3389/fpls.2021.661542.
  • Metwally, A. M., A. A. Radi, R. M. El-Shazoly, and A. M. Hamada. 2018. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. Journal of Plant Research 131 (6):1015–28. ‏ doi: 10.1007/s10265-018-1008-y.
  • Metwally, A. M., R. M. El-Shazoly, and A. M. Hamada. 2012. Effect of boron on growth criteria of some wheat cultivars. Journal of Biology and Earth Sciences 2 (1):B1–B9. ‏
  • Miceli, A., A. Moncada, L. Sabatino, and F. Vetrano. 2019. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy 9 (7):382. ‏ doi: 10.3390/agronomy9070382.
  • Miller, G., N. Suzuki, S. Ciftci‐Yilmaz, and R. O. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33 (4):453–67. ‏ doi: 10.1111/j.1365-3040.2009.02041.x.
  • Mishra, B., and N. Sangwan. 2019. Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regulation 87 (3):403–12. ‏ doi: 10.1007/s10725-019-00480-8.
  • Miwa, K., and T. Fujiwara. 2010. Boron transport in plants: Co-ordinated regulation of transporters. Annals of Botany 105 (7):1103–8. ‏ doi: 10.1093/aob/mcq044.
  • Miwa, K., I. Aibara, and T. Fujiwara. 2014. Arabidopsis thaliana BOR4 is upregulated under high boron conditions and confers tolerance to high boron. Soil Science and Plant Nutrition 60 (3):349–55. ‏ doi: 10.1080/00380768.2013.866524.
  • Miwa, K., J. Takano, H. Omori, M. Seki, K. Shinozaki, and T. Fujiwara. 2007. Plants tolerant of high boron levels. Science (New York, N.Y.) 318 (5855):1417– ‏ doi: 10.1126/science.1146634.
  • Munné-Bosch, S., K. Schwarz, and L. Alegre. 1999. Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiology 121 (3):1047–52. ‏ doi: 10.1104/pp.121.3.1047.
  • Muscolo, A., M. Sidari, and S. Nardi. 2013. Humic substance: Relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration 129:57–63. ‏ doi: 10.1016/j.gexplo.2012.10.012.
  • Nable, R. O., R. Lance, and B. Cartwright. 1990. Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Annals of Botany 66 (1):83–90. ‏ doi: 10.1093/oxfordjournals.aob.a088003.
  • Naeem, M., Z. Jin, G. Wan, D. Liu, H. Liu, K. Yoneyama, and W. Zhou. 2010. 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant and Soil 332 (1–2):405–15. ‏ doi: 10.1007/s11104-010-0306-5.
  • Nawaz, M., S. Ishaq, H. Ishaq, N. Khan, N. Iqbal, S. Ali, M. Rizwan, A. A. Alsahli, and M. N. Alyemeni. 2020. Salicylic acid Improves boron toxicity tolerance by modulating the physio-biochemical characteristics of maize (Zea mays L.) at an early growth stage. Agronomy 10 (12):2013. ‏ doi: 10.3390/agronomy10122013.
  • Nazar, R., N. Iqbal, S. Syeed, and N. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology 168 (8):807–15. doi: 10.1016/j.jplph.2010.11.001.
  • Oleszek, M., and M. Matyka. 2017. Nitrogen fertilization level and cutting affected lignocellulosic crops properties important for biogas production. BioResources 12 (4):8565–80. ‏ doi: 10.15376/biores.12.4.8565-8580.
  • O'Neill, M. A., T. Ishii, P. Albersheim, and A. G. Darvill. 2004. Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology 55:109–39. ‏ doi: 10.1146/annurev.arplant.55.031903.141750.
  • Oosterhuis, D. M., D. Loka, E. Kawakami, and W. Pettigrew. 2014. The physiology of potassium in crop production. Advances in Agronomy 126:203–33. ‏
  • Orsi, M. 2014. Molecular dynamics simulation of humic substances. Chemical and Biological Technologies in Agriculture 1 (1):1–14. ‏ doi: 10.1186/s40538-014-0010-4.
  • Oszmanski, J. 1995. Polyphenols as antioxidants in food. Przem Spoz 3:94–6. ‏
  • Ouzounidou, G., C. Paschalidis, D. Petropoulos, A. Koriki, P. Zamanidis, and A. Petridis. 2013. Interaction of soil moisture and excess of boron and nitrogen on lettuce growth and quality. Horticultural Science 40 ( 3):119–25. ‏ doi: 10.17221/15/2013-HORTSCI.
  • Özfidan-Konakçi, C., E. Yildiztugay, F. Elbasan, A. Yildiztugay, and M. Küçüködük. 2020. Assessment of antioxidant system and enzyme/nonenzyme regulation related to ascorbate-glutathione cycle in ferulic acid-treated Triticum aestivum L. roots under boron toxicity. Turkish Journal of Botany 44 (1):47–61. ‏ doi: 10.3906/bot-1904-23.
  • Pan-Pan, L., Z. Chen, L. Yuan, G. Ji-Jia, C. Yuan, C. De-Hua, and Z. Xiang. 2020. Effects of sodium benzoate on growth and physiological characteristics of wheat seedlings under compound heavy metal stress. Journal of Integrative Agriculture 19 (4):1010–8. ‏ doi: 10.1016/S2095-3119(19)62723-1.
  • Papadakis, I., P. Tsiantas, G. Tsaniklidis, M. Landi, M. Psychoyou, and C. Fasseas. 2018. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. Journal of Plant Physiology 231:337–45. ‏ doi: 10.1016/j.jplph.2018.10.012.
  • Papadakis, I., P. Tsiantas, O. Gerogiannis, S. Vemmos, and M. Psychoyou. 2015. Photosynthetic activity and concentration of chlorophylls, carotenoids, hydrogen peroxide and malondialdehyde in loquat seedlings growing under excess boron conditions. In IV International Symposium on Loquat. Vol. 1092, 221–6. Acta Horticulturae. ‏ doi: 10.17660/ActaHortic.2015.1092.33.
  • Paull, J. G., A. Rathjen, and B. Cartwright. 1991. Major gene control of tolerance of bread wheat (Triticum aestivum L.) to high concentrations of soil boron. Euphytica 55 (3):217–28. ‏ doi: 10.1007/BF00021242.
  • Pennisi, M., R. Gonfiantini, S. Grassi, and P. Squarci. 2006. The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Applied Geochemistry 21 (4):643–55. ‏ doi: 10.1016/j.apgeochem.2005.11.005.
  • Pereira, G., J. Siqueira, W. Batista-Silva, F. Cardoso, A. Nunes-Nesi, and W. Araújo. 2020. Boron: More than an essential element for land plants? Frontiers in Plant Science 11:610307. ‏ doi: 10.3389/fpls.2020.610307.
  • Power, P., and W. Woods. 1997. The chemistry of boron and its speciation in plants. Plant and Soil 193 (2):1–13. ‏ doi: 10.1023/A:1004231922434.
  • Princi, M., A. Lupini, F. Araniti, C. Longo, A. Mauceri, F. Sunseri, and M. Abenavoli. 2016. Boron toxicity and tolerance in plants: Recent advances and future perspectives. In Plant metal interaction, 115–47. doi: 10.1016/B978-0-12-803158-2.00005-9‏
  • Princi, M., A. Lupini, F. Araniti, F. Sunseri, and M. Abenavoli. 2013. Short-term effects of boron excess on root morphological and functional traits in tomato. In XVII International Plant Nutrition Colloquium-Boron Satellite Meeting–Proceedings Book, August 17–18, 1150–1.
  • Qualley, A. V., J. Widhalm, F. Adebesin, C. Kish, and N. Dudareva. 2012. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proceedings of the National Academy of Sciences of the United States of America 109 (40):16383–8. doi: 10.1073/pnas.1211001109.
  • Rajaei, M., A. K. Ejraei, H. R. Owliaei, and A. R. Tavakoli. 2009. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int J Plant Prod 3 (1):1735–6814.
  • Raven, J. A. 1980. Short‐and long‐distance transport of boric acid in plants. New Phytologist 84 (2):231–49. ‏ doi: 10.1111/j.1469-8137.1980.tb04424.x.
  • Reid, R. 2007. Update on boron toxicity and tolerance in plants. In Advances in plant and animal boron nutrition, eds. F. Xu et al., 83–90. Springer.
  • Reid, R. 2010. Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Science 178 (1):9–11. ‏ doi: 10.1016/j.plantsci.2009.10.006.
  • Reid, R. J. 2013. Boron toxicity and tolerance in crop plants. In Crop improvement under adverse conditions, 333–46. New York: Springer. doi: 10.1007/978-1-4614-4633-0_15
  • Reis Giada, M. 2013. Food phenolic compounds: Main classes, sources and their antioxidant power. In Oxidative stress and chronic degenerative diseases-a role for antioxidants, ed. José A. Moralez-González, Vol. 2013, 87–112. Intech Publisher. doi: 10.5772/51687
  • Rhaman, M. S., S. Imran, M. M. Karim, J. Chakrobortty, M. A. Mahamud, P. Sarker, M. Tahjib-Ul-Arif, A. H. K. Robin, W. Ye, Y. Murata, et al. 2021. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports 40 (8):1451–69. ‏ doi: 10.1007/s00299-021-02690-9.
  • Roessner, U., J. Patterson, M. Forbes, G. Fincher, P. Langridge, and A. Bacic. 2006. An investigation of boron toxicity in barley using metabolomics. Plant Physiology 142 (3):1087–101. ‏ doi: 10.1104/pp.106.084053.
  • Rosa, M., C. Prado, G. Podazza, R. Interdonato, J. A. González, M. Hilal, and F. Prado. 2009. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior 4 (5):388–93. ‏ doi: 10.4161/psb.4.5.8294.
  • Roth‐Bejerano, N., and C. Itai. 1981. Effect of boron on stomatal opening in epidermal strips of Commelina communis. Physiologia Plantarum 52 (2):302–4. doi: 10.1111/j.1399-3054.1981.tb08510.x.
  • RoyChoudhury, A., K. Das, S. Ghosh, R. Mukherjee, and R. Banerjee. 2012b. Transgenic plants: Benefits and controversies. Journal of the Botanical Society of Bengal 66:29–35. ‏
  • Roychoudhury, A., S. Pradhan, B. Chaudhuri, and K. Das. 2012a. Phytoremediation of toxic metals and the involvement of Brassica species. In Phytotechnologies: Remediation of environmental contaminants, 219–52. CRC Press, Taylor and Francis. doi:10.1201/b12954-14
  • Rudolphi-Skórska, E., and A. Sieprawska. 2016. Adaptation of wheat cells to short-term ozone stress: The impact of α-tocopherol and gallic acid on natural and model membranes. Acta Physiologiae Plantarum 38 (4):85. doi: 10.1007/s11738-016-2102-1.
  • Samet, H., Y. Cikili, and S. Dursun. 2015. The role of potassium in alleviating boron toxicity and combined effects on nutrient contents in pepper (Capsicum annuum L.). Bulgarian Journal of Agricultural Science 21 (1):64–70. ‏
  • Sarabandi, M., A. Farokhzad, B. Mandoulakani, and R. Ghasemzadeh. 2019. Biochemical and gene expression responses of two Iranian grape cultivars to foliar application of methyl jasmonate under boron toxicity conditions. Scientia Horticulturae 249:355–63. ‏ doi: 10.1016/j.scienta.2019.02.019.
  • Sarafi, E., A. Siomos, P. Tsouvaltzis, C. Chatzissavvidis, and I. Therios. 2018. Boron and maturity effects on biochemical parameters and antioxidant activity of pepper (Capsicum annuum L.) cultivars. Turkish Journal of Agriculture and Forestry 42 (4):237–47. ‏ doi: 10.3906/tar-1708-31.
  • Schnurbusch, T., J. Hayes, and T. Sutton. 2010. Boron toxicity tolerance in wheat and barley: Australian perspectives. Breeding Science 60 (4):297–304. ‏ doi: 10.1270/jsbbs.60.297.
  • Schon, M. K., A. Novacky, and D. Blevins. 1990. Boron induces hyperpolarization of sunflower root cell membranes and increases membrane permeability to K+. Plant Physiology 93 (2):566–71. ‏ doi: 10.1104/pp.93.2.566.
  • Senaratna, T., D. Merritt, K. Dixon, E. Bunn, D. Touchell, and K. Sivasithamparam. 2003. Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation 39 (1):77–81. ‏ doi: 10.1023/A:1021865029762.
  • Seth, K., and N. Aery. 2017. Boron induced changes in biochemical constituents, enzymatic activities, and growth performance of wheat. Acta Physiologiae Plantarum 39 (11):1–10. ‏ doi: 10.1007/s11738-017-2541-3.
  • Seyam, H., and A. Ragab. 2005. Drainage water assessment in some regions of Nile Delta for both pollution and quality for irrigation. Egyptian Journal of Applied Sciences 20 (12):367–75. ‏
  • Shah, A., X. Wu, A. Ullah, S. Fahad, R. Muhammad, L. Yan, and C. Jiang. 2017. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicology and Environmental Safety 145:575–82. ‏ doi: 10.1016/j.ecoenv.2017.08.003.
  • Sharma, A., B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi, and B. Zheng. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24 (13):2452. ‏ doi: 10.3390/molecules24132452.
  • Sharma, P., A. Jha, R. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012‏:1–26. doi: 10.1155/2012/217037.
  • Shi, Y., Y. Zhang, W. Han, R. Feng, Y. Hu, J. Guo, and H. Gong. 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science 7:196. ‏ doi: 10.3389/fpls.2016.00196.
  • Shkolnik, M. 1984. Trace elements in plants. New York: Elsevier. ‏
  • Shorrocks, V. M. 1997. The occurrence and correction of boron deficiency. Plant and Soil 193 (2):121–48. ‏ doi: 10.1023/A:1004216126069.
  • Siddiqui, M. H., M. H. Al-Whaibi, A. M. Sakran, H. M. Ali, M. O. Basalah, M. Faisal, A. Alatar, and A. A. Al-Amri. 2013. Calcium-induced amelioration of boron toxicity in radish. Journal of Plant Growth Regulation 32 (1):61–71. ‏ doi: 10.1007/s00344-012-9276-6.
  • Siddiqui, M., F. Mohammad, M. Khan, M. Al-Whaibi, and A. Bahkali. 2010. Nitrogen in relation to photosynthetic capacity and accumulation of osmoprotectant and nutrients in Brassica genotypes grown under salt stress. Agricultural Sciences in China 9 (5):671–80. ‏ doi: 10.1016/S1671-2927(09)60142-5.
  • Singh, A., R. Gupta, and R. Pandey. 2017. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiology and Molecular Biology of Plants : An International Journal of Functional Plant Biology 23 (2):301–9. ‏ doi: 10.1007/s12298-017-0430-2.
  • Singh, J. P., D. J. Dahiya, and R. P. Narwal. 1990. Boron uptake and toxicity in wheat in relation to zinc supply. Fertilizer Research 24 (2):105–10. ‏ doi: 10.1007/BF01073228.
  • Sirajuddin, Khan, A., L. Ali, H. Chaudhary, M. Munis, H. Bano, and S. Masood 2016. Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Scientia Horticulturae 200:178–185. doi: 10.1016/j.scienta.2016.01.024
  • Sommer, A., and C. Lipman. 1926. Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiology 1 (3):231–49. ‏ doi: 10.1104/pp.1.3.231.
  • Sotiropoulos, T., A. Molassiotis, D. Almaliotis, G. Mouhtaridou, K. Dimassi, I. Therios, and G. Diamantidis. 2006. Growth, nutritional status, chlorophyll content, and antioxidant responses of the apple rootstock MM 111 shoots cultured under high boron concentrations in vitro. Journal of Plant Nutrition 29 (3):575–83. ‏ doi: 10.1080/01904160500526956.
  • Sotiropoulos, T., I. Therios, and K. Dimassi. 1999. Calcium application as a means to improve tolerance of kiwifruit (Actinidia deliciosa L.) to boron toxicity. Scientia Horticulturae 81 (4):443–9. ‏ doi: 10.1016/S0304-4238(99)00028-X.
  • Suarez, D. 2012. Irrigation water quality assessments. ASCE Manual and Reports on Engineering Practice 71:343–70. ‏
  • Surgun, Y., B. Çöl, and B. Bürün. 2016. 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation. Acta Physiologiae Plantarum 38 (3):71. ‏ doi: 10.1007/s11738-016-2088-8.
  • Sutton, T., U. Baumann, J. Hayes, N. C. Collins, B.-J. Shi, T. Schnurbusch, A. Hay, G. Mayo, M. Pallotta, M. Tester, et al. 2007. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science (New York, N.Y.) 318 (5855):1446–9. ‏ doi: 10.1126/science.1146853.
  • Symes, A., A. Shavandi, H. Zhang, I. Mohamed Ahmed, F. Al-Juhaimi, and A. Bekhit. 2018. Antioxidant activities and caffeic acid content in New Zealand asparagus (Asparagus officinalis) roots extracts. Antioxidants 7 (4):52. ‏ doi: 10.3390/antiox7040052.
  • Sytar, O., P. Kumari, S. Yadav, M. Brestic, and A. Rastogi. 2019. Phytohormone priming: Regulator for heavy metal stress in plants. Journal of Plant Growth Regulation 38 (2):739–52. ‏ doi: 10.1007/s00344-018-9886-8.
  • Takano, J., K. Miwa, and T. Fujiwara. 2008. Boron transport mechanisms: Collaboration of channels and transporters. Trends in Plant Science 13 (8):451–7. ‏ doi: 10.1016/j.tplants.2008.05.007.
  • Takano, J., M. Wada, U. Ludewig, G. Schaaf, N. Von Wirén, and T. Fujiwara. 2006. The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell 18 (6):1498–509. ‏ doi: 10.1105/tpc.106.041640.
  • Tanaka, H. 1967. Boron absorption by crop plants as affected by other nutrients of the medium. Soil Science and Plant Nutrition 13 (2):41–4. doi: 10.1080/00380768.1967.10431972.
  • Tanaka, M., and T. Fujiwara. 2008. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflugers Archiv : European Journal of Physiology 456 (4):671–7. ‏ doi: 10.1007/s00424-007-0370-8.
  • Tanaka, M., J. Takano, Y. Chiba, F. Lombardo, Y. Ogasawara, H. Onouchi, S. Naito, and T. Fujiwara. 2011. Boron-dependent degradation of NIP5; 1 mRNA for acclimation to excess boron conditions in Arabidopsis. The Plant Cell 23 (9):3547–59. ‏ doi: 10.1105/tpc.111.088351.
  • Tanaka, R., and A. Tanaka. 2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta 1807 (8):968–76. ‏ doi: 10.1016/j.bbabio.2011.01.002.
  • Tanase, C., O. Bujor, and V. Popa. 2019. Phenolic natural compounds and their influence on physiological processes in plants. In book: Polyphenols in plants, Project: BIOXVACCINI - Natural phenolic systems for dietary lipid protection obtained from shrubs of the genus Vaccinium and their bioaccessibility during the gastrointestinal digestion, 45–58. Academic Press. doi: 10.1016/B978-0-12-813768-0.00003-7
  • Tewari, R., N. Horemans, R. Nauts, J. Wannijn, M. Van Hees, and H. Vandenhove. 2015. Uranium exposure induces nitric oxide and hydrogen peroxide generation in Arabidopsis thaliana. Environmental and Experimental Botany 120:55–64. ‏ doi: 10.1016/j.envexpbot.2015.08.004.
  • Thor, K. 2019. Calcium—Nutrient and messenger. Frontiers in Plant Science 10:440. ‏ doi: 10.3389/fpls.2019.00440.
  • Tisdale, S., W. Nelson, and J. Beaton. 1985. Soil fertility and fertilizers. USA: Collier Macmillan Publishers.‏
  • Tunc-Ozdemir, M., G. Miller, L. Song, J. Kim, A. Sodek, S. Koussevitzky, A. N. Misra, R. Mittler, and D. Shintani. 2009. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiology 151 (1):421–32. ‏ doi: 10.1104/pp.109.140046.
  • Turan, M., N. Taban, and S. Taban. 2009. Effect of calcium on the alleviation of boron toxicity and localization of boron and calcium in cell wall of wheat. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37 (2):99–103.
  • Verbruggen, N., and C. Hermans. 2008. Proline accumulation in plants: A review. Amino Acids 35 (4):753–9. ‏ doi: 10.1007/s00726-008-0061-6.
  • Voxeur, A., and S. Fry. 2014. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron‐bridged in the plasma membrane and form complexes with rhamnogalacturonan II. The Plant Journal : For Cell and Molecular Biology 79 (1):139–49. ‏ doi: 10.1111/tpj.12547.
  • Wakuta, S., K. Mineta, T. Amano, A. Toyoda, T. Fujiwara, S. Naito, and J. Takano. 2015. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1. Plant & Cell Physiology 56 (5):852–62. ‏ doi: 10.1093/pcp/pcv011.
  • Wang, G., S. F. DiTusa, D.-H. Oh, A. D. Herrmann, D. G. Mendoza-Cozatl, M. A. O'Neill, A. P. Smith, and M. Dassanayake. 2021. Cross species multi‐omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. The New Phytologist 230 (5):1985–2000. ‏ doi: 10.1111/nph.17295.
  • Wani, A., H. Chadar, A. Wani, S. Singh, and N. Upadhyay. 2017. Salicylic acid to decrease plant stress. Environmental Chemistry Letters 15 (1):101–23. ‏ doi: 10.1007/s10311-016-0584-0.
  • Warington, K. 1923. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany 37 (4):629–72. ‏ doi: 10.1093/oxfordjournals.aob.a089871.
  • Warington, K. 1937. Boron in agriculture. Nature 140 (3554):1016–1016.‏ doi: 10.1038/1401016b0.
  • Wasternack, C., and I. Feussner. 2018. The oxylipin pathways: Biochemistry and function. Annual Review of Plant Biology 69:363–86. ‏ doi: 10.1146/annurev-arplant-042817-040440.
  • Weidner, S., S. Chrzanowski, M. Karamać, A. Król, A. Badowiec, A. Mostek, and R. Amarowicz. 2014. Analysis of phenolic compounds and antioxidant abilities of extracts from germinating Vitis californica seeds submitted to cold stress conditions and recovery after the stress. International Journal of Molecular Sciences 15 (9):16211–25. ‏ doi: 10.3390/ijms150916211.
  • White, P., and A. Karley. 2010. Potassium cell biology of metals and nutrients, 199–224. Berlin: Springer.
  • Widhalm, J., and N. Dudareva. 2015. A familiar ring to it: Biosynthesis of plant benzoic acids. Molecular Plant 8 (1):83–97. ‏ doi: 10.1016/j.molp.2014.12.001.
  • Williams, M., T. Senaratna, K. Dixon, and K. Sivasithamparam. 2003. Benzoic acid induces tolerance to biotic stress caused by Phytophthora cinnamomi in Banksia attenuata. Plant Growth Regulation 41 (1):89–91. doi: 10.1023/A:1027355604096.
  • Ye, N., G. Zhu, Y. Liu, A. Zhang, Y. Li, R. Liu, L. Shi, L. Jia, and J. Zhang. 2012. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany 63 (5):1809–22. ‏ doi: 10.1093/jxb/err336.
  • Yoshinari, A., M. Fujimoto, T. Ueda, N. Inada, S. Naito, and J. Takano. 2016. DRP1-dependent endocytosis is essential for polar localization and boron-induced degradation of the borate transporter BOR1 in Arabidopsis thaliana. Plant & Cell Physiology 57 (9):1985–2000. ‏ doi: 10.1093/pcp/pcw121.
  • Yusuf, M., Q. Fariduddin, and A. Ahmad. 2011. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85 (10):1574–84. doi: 10.1016/j.chemosphere.2011.08.004.
  • Zainab, Q., C. Tanees, D. Xiongming, H. Lori, and A. Tehseen. 2021. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. Journal of Cotton Research 4 (1):1–9. ‏
  • Zhang, Y., S. Xu, P. Ding, D. Wang, Y. T. Cheng, J. He, M. Gao, F. Xu, Y. Li, Z. Zhu, et al. 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America 107 (42):18220–5. ‏ doi: 10.1073/pnas.1005225107.
  • Zhao, Q., Q. Sun, P. Dong, C. Ma, H. Sun, and C. Liu. 2019. Jasmonic acid alleviates boron toxicity in Puccinellia tenuiflora, a promising species for boron phytoremediation. Plant and Soil 445 (1–2):397–407. ‏ doi: 10.1007/s11104-019-04326-0.
  • Zhu, Y., and H. Gong. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34 (2):455–72. ‏ doi: 10.1007/s13593-013-0194-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.