514
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Biofortification of crops using microbes – a promising sustainable agriculture strategy

, , &
Pages 2912-2935 | Received 22 Apr 2022, Accepted 05 Oct 2022, Published online: 03 Jan 2023

References

  • Abaid-Ullah, M., M. N. Hassan, M. Jamil, G. Brader, M. K. N. Shah, A. Sessitsch, and F. Y. Hafeez. 2015. Plant growth promoting rhizobacteria: An alternate way to improve yield and quality of wheat (Triticum aestivum). International Journal of Agriculture and Biology 17:51–60.
  • Acuna, J. J., M. A. Jorquera, P. J. Barra, D. E. Crowley, and M. De La Luz Mora. 2013. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biology and Fertility of Soils 49 (2):175–85. doi: 10.1007/s00374-012-0705-2.
  • Adak, A., R. Prasanna, S. Babu, N. Bidyarani, S. Verma, M. Pal, Y. S. Shivay, and L. Nain. 2016. Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. Journal of Plant Nutrition.39 (9):1216–32. doi: 10.1080/01904167.2016.1148723.
  • Ahmad, M., Z. Adil, A. Hussain, M. Mumtaz, M. Nafees, I. Ahmad, and M. Jamil. 2019. Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pakistan Journal of Agriculture Science 56:283–9. doi: 10.21162/PAKJAS/19.7285.
  • Ahmad, M., S. M. Nadeem, M. Naveed, and Z. A. Zahir. 2016. Potassium-solubilizing bacteria and their application in agriculture. In Potassium solubilizing microorganisms for sustainable agriculture, by V. S. Meena, B. R. Maurya, J. P. Verma, R. S. Meena, 293–313. New Delhi, India: Springer.
  • Alexander, M. 1997. Introduction to soil microbiology. New York, NY: John Wiley and Sons.
  • Alford, E. R., E. A. Pilon-Smits, S. C. Fakra, and M. W. Paschke. 2012. Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. American Journal of Botany 99 (12):1930–41. doi: 10.3732/ajb.1200124.
  • Beal, T., E. Massiot, J. E. Arsenault, M. R. Smith, and R. J. Hijmans. 2017. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PloS One 12 (4):e0175554. doi: 10.1371/journal.pone.0175554.
  • Bashir, K., Y. Ishimaru, and N. K. Nishizawa. 2011. Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signaling & Behavior 6 (10):1591–3. doi: 10.4161/psb.6.10.17132.
  • Bashir, K., R. Takahashi, H. Nakanishi, and N. K. Nishizawa. 2013. The road to micronutrient biofortification of rice: Progress and prospects. Frontiers in Plant Science 4:15. doi: 10.3389/fpls.2013.00015.
  • Bashir, S., A. Basit, R. N. Abbas, S. Naeem, S. Bashir, N. Ahmed, M. S. Ahmed, M. Z. Ilyas, Z. Aslam, S. S. Alotaibi, et al. 2021. Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.). PloS One 16 (7):e0254647. doi: 10.1371/journal.pone.0254647.
  • Bouis, H. E., and R. M. Welch. 2010. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50:S-20–32. doi: 10.2135/cropsci2009.09.0531.
  • Buescher, E., T. Achberger, I. Amusan, A. Giannini, C. Ochsenfeld, A. Rus, B. Lahner, O. Hoekenga, E. Yakubova, J. F. Harper, et al. 2010. Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences. PloS One 5 (6):e11081. doi: 10.1371/journal.pone.0011081.
  • Cakmak, I., and H. Marschner. 1988. Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant Physiology.132 (3):356–61. doi: 10.1016/S0176-1617(88)80120-2.
  • Carvalho, S. M., and M. W. Vasconcelos. 2013. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Research International.54 (1):961–71. doi: 10.1016/j.foodres.2012.12.021.
  • Chatzistathis, T., I. Therios, and D. Alifragis. 2009. Differential uptake, distribution within tissues and use efficiency of manganese, iron and zinc by olive cultivars kothreiki and koroneiki. HortScience 44 (7):1994–9. doi: 10.21273/HORTSCI.44.7.1994.
  • Chen, B., J. Shen, X. Zhang, F. Pan, X. Yang, and Y. Feng. 2014a. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PloS One 9 (9):e106826. doi: 10.1371/journal.pone.0106826.
  • Chen, B., Y. Zhang, M. T. Rafiq, K. Y. Khan, F. Pan, X. Yang, and Y. Feng. 2014b. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: Effects on plant growth and root exudates. Chemosphere 117:367–73. doi: 10.1016/j.chemosphere.2014.07.078.
  • Chen, W. W., J. L. Yang, C. Qin, C. W. Jin, J. H. Mo, T. Ye, and S. J. Zheng. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology 154 (2):810–9. doi: 10.1104/pp.110.161109.
  • Coccina, A., T. R. Cavagnaro, E. E. Pellegrino, L. Ercoli, M. McLaughlin, and S. J. Watts-Williams. 2019. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biology 19 (1):133. doi: 10.1186/s12870-019-1741-y.
  • Colangelo, E. P., and M. L. Guerinot. 2006. Put the metal to the petal: Metal uptake and transport throughout plants. Current Opinion in Plant Biology 9 (3):322–30. doi: 10.1016/j.pbi.2006.03.015.
  • Costerousse, B., L. S. Mauclaire, E. Frossard, and C. Thonar. 2018. Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Applied and Environmental Microbiology 84 (1):e01715-17. doi: 10.1128/AEM.01715-17.
  • Delaplace, P., B. M. Delory, C. Baudson, M. M. S. de Cazenave, S. Spaepen, S. Varin, Y. Brostaux, and P. Du Jardin. 2015. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biology 15 (1):195. doi: 10.1186/s12870-015-0585-3.
  • Desai, A., and G. Archana. 2011. Role of siderophores in crop improvement. In Bacteria in agrobiology: Plant nutrient management, by D. Maheshwari, 109–39. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-21061-7_6.
  • De Santiago, A., A. M. García-López, J. M. Quintero, M. Avilés, and A. Delgado. 2013. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biology and Biochemistry.57:598–605. doi: 10.1016/j.soilbio.2012.06.020.
  • Dodig, S., and I. Cepelak. 2004. The facts and controversies about selenium. Acta Pharmaceutica (Zagreb, Croatia) 54 (4):261–76.
  • Durán, P., J. J. Acuña, M. A. Jorquera, R. Azcón, F. Borie, P. Cornejo, and M. L. Mora. 2013. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. Journal of Cereal Science.57 (3):275–80. doi: 10.1016/j.jcs.2012.11.012.
  • Durán, P., J. J. Acuña, M. A. Jorquera, R. Azcón, C. Paredes, Z. Rengel, and M. L. Mora. 2014. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biology and Fertility of Soils 50 (6):983–90. doi: 10.1007/s00374-014-0920-0.
  • Egamberdieva, D., G. Berg, K. Lindström, and L. A. Räsänen. 2010. Co-inoculation of Pseudomonas Spp. with rhizobium improves growth and symbiotic performance of fodder Galega (Galega orientalis Lam.). European Journal of Soil Biology 46:269–72. doi: 10.1016/j.ejsobi.2010.01.005.
  • Eide, D. J. 2006. Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta 1763 (7):711–22. doi: 10.1016/j.bbamcr.2006.03.005.
  • Eshaghi, E., R. Nosrati, P. Owlia, M. L. Malboobi, P. Ghaseminejad, and M. R. Ganjali. 2019. Zinc solubilization characteristics of efficient siderophore-producing soil bacteria. Iranian Journal of Microbiology 11 (5):419–30.
  • FAO. 2004. The state food and agriculture 2003–2004. Chief Publishing Management Service Information Division. Rome, Italy: Information Division, FAO. http://www.fao.org/docrep/006/Y5160E/Y5160E00.htm.
  • Freitas, M. A., F. H. Medeiros, S. P. Carvalho, L. R. Guilherme, W. D. Teixeira, H. Zhang, and P. W. Paré. 2015. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Frontiers in Plant Science 6:596. doi: 10.3389/fpls.2015.00596.
  • Garcia, M. J., V. Suarez, F. J. Romera, E. Alcantara, and R. Perez-Vicente. 2011. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiology and Biochemistry: PPB 49 (5):537–44. doi: 10.1016/j.plaphy.2011.01.019.
  • Garg, M., N. Sharma, S. Sharma, P. Kapoor, A. Kumar, and M. Garg. 2018. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition.5:12.
  • Giovannetti, M., M. Tolosano, V. Volpe, S. Kopriva, and P. Bonfante. 2014. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. The New Phytologist 204 (3):609–19. doi: 10.1111/nph.12949.
  • Glick, B. R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012:963401–15. doi: 10.6064/2012/963401.
  • Golubkina, N., L. Krivenkov, A. Sekara, V. Vasileva, A. Tallarita, and G. Caruso. 2020. Prospects of arbuscular mycorrhizal fungi utilization in production of Allium plants. Plants 9 (2):279. doi: 10.3390/plants9020279.
  • Gontia-Mishra, I., S. Sapre, and S. Tiwari. 2017. Zinc solublizing bacteria from rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–90. doi: 10.1016/j.rhisph.2017.04.013.
  • González-Guerrero, M., C. Azcón-Aguilar, M. Mooney, A. Valderas, C. W. MacDiarmid, D. J. Eide, and N. Ferrol. 2005. Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology: FG & B 42 (2):130–40. doi: 10.1016/j.fgb.2004.10.007.
  • Gopalakrishnan, S., S. Vadlamudi, S. Samineni, and C. V. S. Kumar. 2016. Plant growth – Promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus 5 (1):11. doi: 10.1186/s40064-016-3590-6.
  • Goteti, P. K., L. D. A. Emmanuel, S. Desai, and M. H. A. Shaik. 2013. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in Maize (Zea mays L.). International Journal of Microbiology 2013:1–7. doi: 10.1155/2013/869697.
  • Graziano, M., and L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal: For Cell and Molecular Biology 52 (5):949–60. doi: 10.1111/j.1365-313X.2007.03283.x.
  • Gunes, A., A. Inal, M. S. Adak, M. Alpaslan, E. G. Bagci, T. Erol, and D. J. Pilbeam. 2007. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nutrient Cycling in Agroecosystems 78 (1):83–96. doi: 10.1111/j.1365-313X.2007.03283.x.
  • Hafeez, F. Y., S. Hameed, A. H. Zaidi, and K. A. Malik. 2002. Techniques for sustainable agriculture. In Biofertilizers for sustainable agriculture, ed. F. Azam, M. M. Iqbal, C. Inayatullah, and K. A. Malik, 67–73. Faisalabad, Pakistan: NIAB.
  • Hafeez, B., Y. M. Khanif, and M. Saleem. 2013. Role of zinc in plant nutrition – A review. American Journal of Experimental Agriculture 3 (2):374–91. doi: 10.9734/AJEA/2013/2746.
  • Harris, J., K. A. Schneberg, and E. A. H. Pilon-Smits. 2014. Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239 (2):479–91. doi: 10.1007/s00425-013-1996-8.
  • Hatfield, D. L., P. A. Tsuji, B. A. Carlson, and V. N. Gladyshev. 2014. Selenium and selenocysteine: Roles in cancer, health, and development. Trends in Biochemical Sciences 39 (3):112–20. doi: 10.1016/j.tibs.2013.12.007.
  • Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management. Upper Saddle River, NJ, USA: Pearson Education.
  • Hayat, R., I. Ahmed, and R. A. Sheirdil. 2012. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop production for agricultural improvement, by M. Ashraf, M. Öztürk, M. Ahmad, M. Aksoy, 557–79. Dordrecht: Springer. doi: 10.1007/978-94-007-4116-4_22.
  • Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology 60 (4):579–98. doi: 10.1007/s13213-010-0117-1.
  • Hermosillo-Cereceres, M. A., E. S. Chávez, A. G. Aguilar, E. M. Márquez, and M. L. García-Bañuelos. 2013. Biofortification and distribution patterns of selenium in bean: Response to selenate and selenite. Journal of Food, Agriculture and Environment 11 (2):421–6. doi: 10.1234/4.2011.2287.
  • Htwe, A. Z., S. M. Moh, K. Moe, and T. Yamakawa. 2018. Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Science and Plant Nutrition 64:222–9. doi: 10.1080/00380768.2017.1421436.
  • Hussain, A., M. Arshad, Z. A. Zahir, and M. Asghar. 2015. Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pakistan Journal of Agricultural Sciences 52 (4):915–22.
  • Hussain, A., Z. A. Zahir, H. N. Asghar, M. Ahmad, M. Jamil, M. Naveed, and M. F. U. Zaman Akhtar. 2018. Zinc solubilizing bacteria for zinc biofortification in cereals: A step toward sustainable nutritional security. In Role of rhizospheric microbes in soil: Volume 2: Nutrient management and crop improvement, by V. S. Meena, 203–27. Singapore: Springer.
  • Hunt, J. R. 2003. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American Journal of Clinical Nutrition 78 (3 Suppl):633S–9S. doi: 10.1093/ajcn/78.3.633S.
  • Imran, M., M. Arshad, A. Khalid, S. Kanwal, and D. E. Crowley. 2014. Perspectives of rhizosphere microflora for improving Zn bioavailability and acquisition by higher plants. International Journal of Agriculture and Biology 16:653–62.
  • Jetten, M. S., S. Logemann, G. Muyzer, L. A. Robertson, S. De Vries, M. C. van Loosdrecht, and J. G. Kuenen. 1997. Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek 71 (1/2):75–93. doi: 10.1023/A:1000150219937.
  • Jha, C. K., and M. Saraf. 2015. Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development 2015:108–19. doi: 10.13140/RG.2.1.5171.2164.
  • Jin, C. W., Y. F. He, C. X. Tang, P. Wu, and S. J. Zheng. 2006. Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant, Cell & Environment 29 (5):888–97. doi: 10.1111/j.1365-3040.2005.01468.x.
  • Jin, C. W., G. Y. You, and S. J. Zheng. 2008. The iron deficiency-induced phenolics secretion plays multiple important roles in plant iron acquisition underground. Plant Signaling & Behavior 3 (1):60–1. doi: 10.4161/psb.3.1.4902.
  • Jin, C. W., G. X. Li, X. H. Yu, and S. J. Zheng. 2010. Plant Fe status affects the composition of siderophore – Secreting microbes in the rhizosphere. Annals of Botany 105 (5):835–41. doi: 10.1093/aob/mcq071.
  • Jinal, H. N., K. Gopi, P. Prittesh, V. P. Kartik, and N. Amaresan. 2019. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Environmental Science and Pollution Research International 26 (32):32815–23. doi: 10.1007/s11356-019-06394-2.
  • Joshi, D., G. Negi, S. Vaid, and A. Sharma. 2013. Enhancement of wheat growth and Zn Content in grains by zinc solubilizing bacteria. International Journal of Agriculture Environment and Biotechnology 6 (3):344–50.
  • Kloepper, J. W. 1994. Plant growth-promoting rhizobacteria (other systems). In Azospirillum, by Y. Okon, 111–8. Boca Raton, FL, USA: Plant Associations, CRC Press.
  • Karak, T., U. K. Singh, S. Das, D. K. Das, and Y. Kuzyakov. 2005. Comparative efficacy of ZnSO4 and Zn- EDTA application for fertilization of rice (Oryza sativa L.). Archives of Agronomy and Soil Science 51 (3):253–64. doi: 10.1080/03650340400026701.
  • Karnwal, A. 2021. Pseudomonas spp., a zinc-solubilizing vermicompost bacteria with plant growth-promoting activity moderates zinc biofortification in tomato. International Journal of Vegetable Science 27 (4):398–412. doi: 10.1080/19315260.2020.1812143.
  • Kim, S., H. Lim, and I. Lee. 2010. Enhanced heavy metal phytoextraction by Echinochloa crusgalli using root exudates. Journal of Bioscience and Bioengineering 109 (1):47–50. doi: 10.1016/j.jbiosc.2009.06.018.
  • Khalid, S., H. N. Asghar, M. J. Akhtar, A. Aslam, and Z. A. Zahir. 2015. Biofortification of iron in chickpea by plant growth-promoting rhizobacteria. Pakistan Journal of Botany.47:1191–4.
  • Khande, R., S. K. Sharma, A. Ramesh, and M. P. Sharma. 2017. Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–38. doi: 10.1016/j.rhisph.2017.09.002.
  • Khan, A., J. Singh, V. K. Upadhayay, A. V. Singh, and S. Shah. 2019. Microbial biofortification: A green technology through plant growth promoting microorganisms. In Sustainable green technologies for environmental management, by S. Shah., V. Venkatramanan, R. Prasad. Singapore: Springer. doi: 10.1007/978-981-13-2772-8_13.
  • Kobayashi, T., and N. K. Nishizawa. 2012. Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology 63:131–52. doi: 10.1146/annurev-arplant-042811-105522.
  • Kushwaha, P., R. Srivastava, K. Pandiyan, A. Singh, H. Chakdar, P. L. Kashyap, A. K. Bhardwaj, M. Kumar, N. Karthikeyan, A. Y. Bagul, et al. 2021. Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. Journal of Soil Science and Plant Nutrition 21:922–35. doi: 10.1007/s42729-021-00411-5.
  • Kucey, R. M. N. 1988. Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Canadian Journal of Soil Science 68 (2):261–70. doi: 10.4141/cjss88-026.
  • Ku, Y. S., H. M. Rehman, and H. M. Lam. 2019. Possible roles of rhizospheric and endophytic microbes to provide a safe and affordable means of crop biofortification. Agronomy 9 (11):764. doi: 10.3390/agronomy9110764.
  • Kumssa, D. B., E. J. Joy, E. L. Ander, M. J. Watts, S. D. Young, S. Walker, and M. R. Broadley. 2015. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific Reports 5:10974. doi: 10.1038/srep10974.
  • Li, S. H., T. F. Xiao, and B. S. Zheng. 2012. Medical geology of arsenic, Se and thallium in China. The Science of the Total Environment 421-422:31–40. doi: 10.1016/j.scitotenv.2011.02.040.
  • Liang, J., B. Z. Han, M. J. R. Nout, and R. J. Hamer. 2008. Effect of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc brown rice. Food Chemistry 110 (4):821–8. doi: 10.1016/j.foodchem.2008.02.064.
  • Liu, A., C. Hamel, R. Hamilton, B. Ma, and D. Smith. 2000. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9 (6):331–6. doi: 10.1007/s005720050277.
  • Lucena, C., B. M. Waters, F. J. Romera, M. J. García, M. Morales, E. Alcántara, and R. Pérez-Vicente. 2006. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. Journal of Experimental Botany 57 (15):4145–54. doi: 10.1093/jxb/erl189.
  • Luo, W., J. Li, X. Ma, H. Niu, S. Hou, and F. Wu. 2019. Effect of arbuscular mycorrhizal fungi on uptakeof selenate, selenite, and selenomethionine by roots of winter wheat. Plant and Soil 438 (1–2):71–83. doi: 10.1007/s11104-019-04001-4.
  • Ma, X., W. Luo, J. Li, and F. Wu. 2019. Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L) grain on Zn-spiked soils. Applied Soil Ecology 135:91–7. doi: 10.1016/j.apsoil.2018.11.007.
  • Malinowski, D., H. Zuo, D. Belesky, and G. Alloush. 2004. Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant and Soil 267 (1–2):1–12. doi: 10.1007/s11104-005-2575-y.
  • Manasa, M., P. Ravinder, S. Gopalakrishnan, V. Srinivas, R. Z. Sayyed, H. A. El Enshasy, M. Yahayu, A. T. Kee Zuan, H. S. Kassem, and B. Hameeda. 2021. Co-inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability 13 (21):12091. doi: 10.3390/su132112091.
  • Marastoni, L., Y. Pii, M. Maver, F. Valentinuzzi, S. Cesco, and T. Mimmo. 2019. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. Plant Physiology and Biochemistry: PPB 136:118–26. doi: 10.1016/j.plaphy.2019.01.013.
  • Masood, A., M. I. R. Khan, M. Fatma, M. Asgher, T. S. Per, and N. A. Khan. 2016. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiology and Biochemistry: PPB 104:1–10. doi: 10.1016/j.plaphy.2016.03.017.
  • Mehdi, Y., J. Hornick, L. Istasse, and I. Dufrasne. 2013. Selenium in the environment, metabolism and involvement in body functions. Molecules 18 (3):3292–311. doi: 10.3390/molecules18033292.
  • Mishra, P. K., S. C. Bisht, P. Ruwari, G. K. Joshi, G. Singh, J. K. Bisht, and J. C. Bhatt. 2011. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). European Journal of Soil Biology.47 (1):35–43. doi: 10.1016/j.ejsobi.2010.11.005.
  • Murgia, I., P. Arosio, D. Tarantino, and C. Soave. 2012. Biofortification for combating ‘hidden hunger’ for iron. Trends in Plant Science 17 (1):47–55. doi: 10.1016/j.tplants.2011.10.003.
  • Naz, I., H. Ahmad, S. N. Khokhar, K. Khan, and A. H. Shah. 2016. Impact of zinc solubilizing bacteria on zinc contents of wheat. American-Eurasian Journal of Agricultural & Environmental Sciences 16 (3):449–54.
  • Neuhierl, B., and A. Böck. 1996. On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. European Journal of Biochemistry 239 (1):235–8. doi: 10.1111/j.1432-1033.1996.0235u.x.
  • Nguyen, T. D., T. R. Cavagnaro, and S. J. Watts-Williams. 2019. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: A physiological and molecular assessment. Scientific Reports 9 (1):14880. doi: 10.1038/s41598-019-51369-5.
  • Patel, P. J., G. R. Trivedi, R. K. Shah, and M. Saraf. 2018. Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatalysis and Agricultural Biotechnology.14:198–203. doi: 10.1016/j.bcab.2018.03.013.
  • Paul, E. A. 1989. Soil microbiology and biochemistry in perspective. In Soil microbiology and biochemistry, by E. A. Paul, F. E. Clark, 1–10. San Diego, CA, USA: Academic Press.
  • Pellegrino, E., and S. Bedini. 2014. Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and Biochemistry.68:429–39. doi: 10.1111/j.1469-8137.2012.04090.x.
  • Pendias. 2010. Trace elements in soils and plants. Boca Raton, Florida: CRC Press.
  • Pezzarossa, B., D. Remorini, M. L. Gentile, and R. Massai. 2012. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. Journal of the Science of Food and Agriculture 92 (4):781–6. doi: 10.1002/jsfa.4644.
  • Pii, Y., L. Marastoni, C. S. Maria, C. Fontanella, G. M. Beone, S. Cesco, and T. Mimmo. 2016. Modulation of Fe acquisition process by Azospirillum brasilense in cucumber plants. Environmental and Experimental Botany.130:216–25. doi: 10.1016/j.envexpbot.2016.06.011.
  • Ramesh, A., S. K. Sharma, M. P. Sharma, N. Yadav, and O. P. Joshi. 2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology.73:87–96. doi: 10.1016/j.apsoil.2013.08.009.
  • Rana, A., B. Saharan, L. Nain, R. Prasanna, and Y. S. Shivay. 2012b. Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science & Plant Nutrition.58 (5):573–82. doi: 10.1080/00380768.2012.716750.
  • Rana, A., M. Joshi, R. Prasanna, Y. S. Shivay, and L. Nain. 2012a. Biofortifcation of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology.50:118–26. doi: 10.1016/j.ejsobi.2012.01.005.
  • Rawat, N., K. Neelam, V. K. Tiwari, and H. S. Dhaliwal. 2013. Review Biofortification of cereals to overcome hidden hunger. Plant Breeding 132 (5):437–45. doi: 10.1111/pbr.12040.
  • Rehman, H. M., J. W. Cooper, H.-M. Lam, and S. H. Yang. 2019. Legume biofortification is an underexploited strategy for combating hidden hunger. Plant, Cell & Environment 42 (1):52–70. doi: 10.1111/pce.13368.
  • Renwick, A. G., L. O. Dragsted, R. J. Fletcher, A. Flynn, J. M. Scott, S. Tuijtelaars, and T. Wildemann. 2008. Minimising the population risk of micronutrient deficiency and over-consumption: A new approach using selenium as an example. European Journal of Nutrition 47 (1):17–25. doi: 10.1007/s00394-007-0691-6.
  • Rêgo, M. C. F., F. Ilkiu-Borges, M. C. C. de Filippi, L. A. Gonçalves, and G. B. da Silva. 2014. Morphoanatomical and biochemical changes in the roots of rice plants induced by plant growth-promoting microorganisms. Australian Journal of Botany.2014:1–10. doi: 10.1155/2014/818797.
  • Römheld, V., and H. Marschner. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology 80 (1):175–80. doi: 10.1104/pp.80.1.175.
  • Saha, R., N. Saha, R. S. Donofrio, and L. L. Bestervelt. 2012. Microbial siderophores: A mini review. Journal of Basic Microbiology.52:1–15. doi: 10.1002/jobm.201100552.
  • Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66 (9):1794–8. doi: 10.1016/j.chemosphere.2006.07.067.
  • Saravanan, V. S., M. R. Kumar, and T. M. Sa. 2011. Microbial zinc solubilization and their role on plants. In Bacteria in agrobiology: plant nutrient management, by D. K. Maheshwari, 47–63. Berlin: Springer.
  • Sarwar, N., M. Imran, M. R. Shaheen, W. Ishaque, M. A. Kamran, A. Matloob, A. Rehim, and S. Hussain. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–21. doi: 10.1016/j.chemosphere.2016.12.116.
  • Sathya, A., R. Vijayabharathi, V. Srinivas, and S. Gopalakrishnan. 2016. Plant growth-promoting actinobacteria on chickpea seed mineral density: An upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6 (2):138. doi: 10.1007/s13205-016-0458-y.
  • Saunders, J., and T. Smith. 2010. Malnutrition: Causes and consequences. Clinical Medicine (London, England) 10 (6):624–7. doi: 10.7861/clinmedicine.10-6-624.
  • Schalk, I. J., M. Hannauer, and A. Braud. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology 13 (11):2844–54. doi: 10.1111/j.1462-2920.2011.02556.x.
  • Schmidt, W. 1999. Mechanisms and regulation of reduced-based iron uptake in plants. New Phytologist 141 (1):1–26. doi: 10.1046/j.1469-8137.1999.00331.x.
  • Scrimshaw, N. S. 1994. The consequences of hidden hunger for individuals and societies. Food and Nutrition Bulletin 15 (1):1–25. doi: 10.1177/156482659401500117.
  • Seguela, M., J. F. Briat, G. Vert, and C. Curie. 2008. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. The Plant Journal: For Cell and Molecular Biology 55 (2):289–300. doi: 10.1111/j.1365-313X.2008.03502.x.
  • Shaikh, S., and M. Saraf. 2017. Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatalysis and Agricultural Biotechnology.9:120–6. doi: 10.1016/j.bcab.2016.12.008.
  • Sharma, A., D. Shankhdhar, and S. Sc. 2013. Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant, Soil and Environment 59 (2):89–94. doi: 10.17221/683/2012-PSE.
  • Shukla, A. K., N. K. Sinha, P. K. Tiwari, C. Prakash, S. K. Behera, N. K. Lenka, V. K. Singh, B. S. Dwivedi, K. Majumdar, A. Kumar, et al. 2017. Spatial distribution and management zones for sulfur and micronutrients in Shiwalik Himalayan region of India. Land Degradation & Development 28 (3):959–69. doi: 10.1002/ldr.2673.
  • Shukla, A. K., P. S. Babu, P. K. Tiwari, C. Prakash, A. K. Patra, and M. C. Patnaik. 2015. Current micronutrient deficiencies in soils of Telengana for their precise management. Indian Journal of Fertilizer 11 (8):33–43.
  • Shukla, A. K., S. K. Behera, N. K. Lenka, P. K. Tiwari, C. Prakash, R. S. Malik, N. K. Sinha, V. K. Singh, A. K. Patra, and S. K. Chaudhary. 2016. Spatial variability of soil micronutrients in the intensively cultivated trans-Gangetic Plains of India. Soil and Tillage Research.163:282–9. doi: 10.1016/j.still.2016.07.004.
  • Shukla, A. K., N. K. Sinha, P. K. Tiwari, C. Prakash, S. K. Behera, P. Surendra Babu, M. C. Patnaik, J. Somasundaram, P. Singh, B. S. Dwivedi, et al. 2018. Evaluation of spatial distribution and regional zone delineation for micronutrients in a semiarid Deccan Plateau Region of India. Land Degradation & Development 29 (8):2449–59. doi: 10.1002/ldr.2992.
  • Sieh, D., M. Watanabe, E. A. Devers, F. Brueckner, R. Hoefgen, and F. Krajinski. 2013. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. The New Phytologist 197 (2):606–16. doi: 10.1111/nph.12034.
  • Singh, D. 2016. Enhancement of uptake and translocation of micronutrients in wheat by using endophytes. Ph.D. thesis, IARI Post Graduate School.
  • Singh, D., N. Geat, M. V. S. Rajawat, M. M. Mahajan, R. Prasanna, S. Singh, R. Kaushik, R. N. Singh, K. Kumar, and A. K. Saxena. 2017b. Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. Journal of Plant Growth Regulation 37 (1):174–82. doi: 10.1007/s00344-017-9716-4.
  • Singh, D., N. Geat, M. V. S. Rajawat, R. Prasanna, A. Kar, A. M. Singh, and A. K. Saxena. 2018. Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Annals of Microbiology 68 (12):815–33. doi: 10.1007/s13213-018-1388-1.
  • Singh, D., M. V. S. Rajawat, R. Kaushik, R. Prasanna, and A. K. Saxena. 2017a. Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant and Soil 416 (1–2):107–16. doi: 10.1007/s11104-017-3189-x.
  • Singh, B., S. K. A. Natesan, B. Singh, and K. Usha. 2005. Improving zinc efficiency of cereals under zinc deficiency. Current Science 88:36–44.
  • Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. 3rd ed. London: Academic.
  • Soe, K. M., A. Bhromsiri, and D. Karladee. 2010. Effects of selected endophytic actino-mycetes (Streptomyces sp.) and Bradyrhizobia from Myanmar on growth, nodulation, nitrogen fixation and yield of different soybean varieties. Chiang Mai University Journal of Natural Sciences 9:95–109. doi: 10.1080/00380768.2013.794437.
  • Sreevidya, M., and S. Gopalakrishnan. 2017. Direct and indirect plant growth-promoting abilities of Bacillus species on chickpea, isolated from compost and rhizosphere soils. Organic Agriculture 7 (1):31–40. doi: 10.1007/s13165-015-0141-3.
  • Stajkovic, O., D. Delic, D. Josic, D. Kuzmanovic, N. Rasulic, and J. Knezevic-Vukcevic. 2011. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Romanian Biotechnology Letters 16:5919–26.
  • Sun, Z., Z. Yue, H. Liu, K. Ma, and C. Li. 2021. Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Frontiers in Nutrition 38:704030. PMID: 34414208; PMCID: PMC8368724. doi: 10.3389/fnut.2021.704030.
  • Sunde, R. A. 2012. Selenium. In Modern nutrition in health and disease, by A. C. Ross, B. Caballero, R. J. Cousins, K. L. Tucker, T. R. Ziegler. 11th ed., 225–37. Philadelphia, PA, USA: Lippincott Williams & Wilkins.
  • Sultana, U., S. Desai, G. Reddy, and T. Prasad. 2020. Zinc solubilizing plant growth promoting microbes produce zinc nanoparticles. Journal of Agriculture and Ecology 10 (10):36–43. doi: 10.1101/602219.
  • Tang, J., C. Zou, Z. He, R. Shi, I. O. Monasterio, Y. Ou, and Y. Zhang. 2008. Mineral element distributions in milling fractions of Chinese wheats. Journal of Cereal Science.48 (3):821–8. doi: 10.1016/j.jcs.2008.06.008.
  • Tariq, M., S. Hameed, K. A. Malik, and F. Y. Hafeez. 2007. Plant root associated bacteria for zinc mobilization in rice. Pakistan J Bot 39:245.
  • Terry, N., A. M. Zayed, M. P. de Souza, and A. S. Tarun. 2000. Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 51:401–32. doi: 10.1146/annurev.arplant.51.1.401.
  • R. K. Tewari., P. Kumar, and P. N. Sharma. 2005. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Science 169 (6):1037–45., doi: 10.1016/j.plantsci.2005.06.006.
  • Thomson, C. D. 2004. Assessment of requirements for selenium and adequacy of selenium status: A review. European Journal of Clinical Nutrition 58 (3):391–402. doi: 10.1038/sj.ejcn.1601800.
  • Trivedi, G., P. Patel, and M. Saraf. 2020. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South African Journal of Botany 134:27–35. doi: 10.1016/j.sajb.2019.10.001.
  • Ullah, M. A., and F. Yusuf. 2019. Biofertilizer/biopesticide potentiality of zinc solubilizing Pseudomonas aeruginosa FA-9 and Enterobactersp. FA-11 isolated from the wheat rhizosphere grown in arid zone. Access Microbiology 1:272. doi: 10.1099/acmi.ac2019.po0127.
  • Vacheron, J., G. Desbrosses, M.-L. Bouffaud, B. Touraine, Y. Moënne-Loccoz, D. Muller, L. Legendre, F. Wisniewski-Dyé, and C. Prigent-Combaret. 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4:356. doi: 10.3389/fpls.2013.00356.
  • Vaid, S. K., B. Kumar, A. Sharma, A. K. Shukla, and P. C. Srivastava. 2014. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of Soil Science and Plant Nutrition 14 (ahead):0 doi: 10.4067/S0718-95162014005000071.
  • Wang, Y., X. Yang, X. Zhang, L. Dong, J. Zhang, Y. Wei, Y. Feng, and L. Lu. 2014. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alf redii. H. Journal of Agricultural and Food Chemistry 62 (8):1783–91. doi: 10.1021/jf404152u.
  • Wang, J., C. Zhou, X. Xiao, Y. Xie, L. Zhu, and Z. Ma. 2017. Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Applied Sciences 7 (1):85. doi: 10.3390/app7010085.
  • Watt-Williams, S. J., and T. R. Cavagnaro. 2018. Arbascular mycorhizal fungi increases grain zinc concentration and modify the expression of root ZIP transporter genes in modern barley (Hordeum vulgare) cultivar. Plant Science 274:163–70. doi: 10.1016/j.plantsci.2018.05.015.
  • White, P. J., and M. R. Broadley. 2005. Biofortifying crops with essential mineral elements. Trends in Plant Science 10 (12):586–93. doi: 10.1016/j.tplants.2005.10.001.
  • White, P. J., and M. R. Broadley. 2009. Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, Se and iodine. The New Phytologist 182 (1):49–84. doi: 10.1111/j.1469-8137.2008.02738.x.
  • Whiting, S. N., M. P. de Souza, and N. Terry. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspicaerulescens. Environmental Science & Technology 35 (15):3144–50. doi: 10.1021/es001938v.
  • Winkel, L. H. E., B. Vriens, G. D. Jones, L. S. Schneider, E. Pilon-Smits, and G. S. Bañuelos. 2015. Selenium cycling across soil–plant–atmosphere interfaces: A critical review. Nutrients 7 (6):4199–239. doi: 10.3390/nu7064199.
  • Wróbel, K., K. Wróbel, S. S. Kannamkumarath, J. A. Caruso, I. A. Wysocka, E. Bulska, J. Świa̧tek, and M. Wierzbicka. 2004. HPLC–ICP-MS speciation of selenium in enriched onion leaves – A potential dietary source of Se-methylselenocysteine. Food Chemistry.86 (4):617–23. doi: 10.1016/j.foodchem.2003.11.005.
  • Xie, X., H. Zhang, and P. Pare. 2009. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signaling & Behavior 4 (10):948–53. doi: 10.4161/psb.4.10.9709.
  • Yaseen, M., T. Abbas, M. Z. Aziz, A. Wakeel, H. Yasmeen, W. Ahmad, A. Ullah, and M. Naveed. 2018. Microbial assisted foliar feeding of micronutrients enhance growth, yield and biofotification of wheat. International Journal of Agriculture and Biology 20:353–60. doi: 10.17957/IJAB/15.049.
  • Yasin, M., A. F. El-Mehdawi, A. Anwar, E. A. H. Pilon-Smits, and M. Faisal. 2015. Microbial-enhanced selenium and iron biofortification of Wheat (Triticum aestivum L.) – Applications in phytoremediation and biofortification. International Journal of Phytoremediation 17 (1–6):341–7. doi: 10.1080/15226514.2014.922920.
  • Ye, X., S. Al-Babili, A. Klöti, J. Zhang, P. Lucca, P. Beyer, and I. Potrykus. 2000. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science (New York, N.Y.) 287 (5451):303–5. doi: 10.1126/science.287.5451.303.
  • Zhang, H., Y. Sun, X. Xie, M. S. Kim, S. E. Dowd, and P. W. Pare. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal: For Cell and Molecular Biology 58 (4):568–77. doi: 10.1111/j.1365-313X.2009.03803.x.
  • Zheng, X., L. Chen, and X. Li. 2018. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Botanical Studies 59 (1):22. doi: 10.1186/s40529-018-0238-6.
  • Zhu, X. F., T. Jiang, Z. W. Wang, G. J. Lei, Y. Z. Shi, G. X. Li, and S. J. Zheng. 2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Journal of Hazardous Materials.239–240:302–7. doi: 10.1016/j.jhazmat.2012.08.077.
  • Zuo, Y., and F. Zhang. 2009. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy for Sustainable Development 29 (1):63–71. doi: 10.1051/agro:2008055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.