263
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Root morphology, yield and must composition of grapevine subjected to application of urea methods and rates

, , , , , , , , , , , & ORCID Icon show all
Pages 2959-2976 | Received 20 Jan 2022, Accepted 07 Nov 2022, Published online: 02 Jan 2023

References

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. De Moraes Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6):711–28. doi: 10.1127/0941-2948/2013/0507.
  • Antolín, M. C., H. Baigorri, I. Luis, F. Aguirrezábal, L. Geny, M. Broquedis, and M. Sánchez-Díaz. 2003. ABA during reproductive development in non-irrigated grapevines (Vitis vinifera L. cv. Tempranillo). Australian Journal of Grape and Wine Research 9 (3):169–76. doi: 10.1111/j.1755-0238.2003.tb00266.x.
  • AOAC. Association of Official Analytical Chemists. 2005. Official methods of analysis of AOAC International Computer. 18° ed., Vol. 1, Gaithersburg, Maryland.
  • Artacho, P., and C. Bonomelli. 2017. Net primary productivity and allocation to fine-root production in field-grown sweet cherry trees under different soil nitrogen regimes. Scientia Horticulturae 219:207–15. doi: 10.1016/j.scienta.2017.02.047.
  • Barlow, K., W. Bond, B. Holzapfel, J. Smith, and R. Hutton. 2009. Nitrogen concentrations in soil solution and surface run-off on irrigated vineyards in Australia. Australian Journal of Grape and Wine Research 15 (2):131–43. doi: 10.1111/j.1755-0238.2008.00042.x.
  • Blank, M., S. Tittmann, N. B. Ghozlen, and M. Stoll. 2018. Grapevine rootstocks result in differences in leaf composition (Vitis vinifera L. cv. Pinot Noir) detected through non-invasive fluorescence sensor technology. Australian Journal of Grape and Wine Research 24 (3):327–34. doi: 10.1111/ajgw.12343.
  • Brunetto, G., C. A. Ceretta, G. W. B. de Melo, E. Girotto, P. A. A. Ferreira, C. R. Lourenzi, R. da Rosa Couto, A. Tassinaria, R. K. Hammerschmitt, L. O. S. da Silva, et al. 2016. Contribution of nitrogen from urea applied at different rates and times on grapevine nutrition. Scientia Horticulturae 207:1–6. doi: 10.1016/j.scienta.2016.05.002.
  • Brunetto, G., C. A. Ceretta, G. W. Bastos de Melo, J. Kaminski, G. Trentin, E. Girotto, P. A. A. Ferreira, A. Miotto, and P. C. O. Trivelin. 2014. Contribution of nitrogen from agricultural residues of rye to ‘Niagara Rosada’ grape nutrition. Scientia Horticulturae 169:66–70. doi: 10.1016/j.scienta.2014.02.019.
  • Brunetto, G., C. A. Ceretta, J. Kaminski, G. W. d Melo, E. Girotto, E. E. Trentin, C. R. Lourenzi, R. C. B. Vieira, and L. C. Gatiboni. 2009a. Grape production and chemical composition of Cabernet Sauvignon vines subjected to nitrogen fertilization. Ciência Rural 39 (7):2035–41. doi: 10.1590/S0103-84782009005000162.
  • Brunetto, G., C. A. Ceretta, J. Kaminski, G. W. d Melo, E. Girotto, E. E. Trentin, C. R. Lourenzi, R. C. B. Vieira, and L. C. Gatiboni. 2009b. Produção e composição química da uva de videiras Cabernet Sauvignon submetidas à adubação nitrogenada. Ciência Rural 39 (7):2035–41. doi: 10.1590/S0103-84782009005000162.
  • Brunetto, G., F. Lorensini, C. A. Ceretta, P. A. Avelar Ferreira, R. da Rosa Couto, L. De Conti, M. Nara Ciotta, M. Kulmann, R. O. Schneider, L. Michelon Somavilla, et al. 2017. Contribution of mineral N to young grapevine in the presence or absence of cover crops. Journal of Soil Science and Plant Nutrition 17 (3):570–80. doi: 10.4067/S0718-95162017000300002.
  • Brunetto, G., J. Kaminski, G. W. d Melo, F. Brunning, and F. J. K. Mallmann. 2006. Destino do nitrogênio em videiras “chardonnay” e “riesling renano” quando aplicado no inchamento das gemas. Revista Brasileira de Fruticultura 28 (3):497–500. doi: 10.1590/S0100-29452006000300034.
  • Castellanos, M. T., M. C. Cartagena, F. Ribas, M. J. Cabello, A. Arce, and A. M. Tarquis. 2013. Impact of nitrogen uptake on field water balance in fertirrigated melon. Agricultural Water Management 120 (1):56–63. doi: 10.1016/j.agwat.2012.10.020.
  • Ceccon, C., M. Tagliavini, A. O. Schmitt, and D. M. Eissenstat. 2016. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply. Tree Physiology 36 (5):618–27. doi: 10.1093/TREEPHYS/TPW022.
  • Centinari, M., J. Heuvel, E. Vanden, M. Goebel, M. S. Smith, and T. L. Bauerle. 2016. Root-zone management practices impact above and belowground growth in Cabernet Franc grapevines. Australian Journal of Grape and Wine Research 22 (1):137–48. doi: 10.1111/ajgw.12162.
  • Chiarotti, F., I. T. Guerios, F. L. Cuquel, and L. A. Biasi. 2011. Melhoria da qualidade de uva “Bordô” para produção de vinho e suco de uva. Revista Brasileira De Fruticultura 33 (spe1):618–24. doi: 10.1590/S0100-29452011000500085.
  • Comas, L. H., L. J. Anderson, R. M. Dunst, A. N. Lakso, and D. M. Eissenstat. 2005. Canopy and environmental control of root dynamics in a long-term study of Concord grape. The New Phytologist 167 (3):829–40. doi: 10.1111/J.1469-8137.2005.01456.X.
  • Comas, L. H., T. L. Bauerle, and D. M. Eissenstat. 2010. Biological and environmental factors controlling root dynamics and function: Effects of root ageing and soil moisture. Australian Journal of Grape and Wine Research 16 (SUPPL. 1):131–7. doi: 10.1111/j.1755-0238.2009.00078.x.
  • CQFS-RS/SC. 2016. Fertilization and liming manual for the states of Rio Grande do Sul and Santa Catarina. 11° ed., Vol. 11. Porto Alegre: SBCS - Núcleo Regional Sul/UFRGS. Recuperado de. http://www.sbcs-nrs.org.br/?secao=publicacoes.
  • Giusti, M. M., and R. E. Wrolstad. 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry 2 (1):F1–13. doi: 10.1002/0471142913.faf0102s00.
  • Guilpart, N., A. Metay, and C. Gary. 2014. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. European Journal of Agronomy 54:9–20. doi: 10.1016/j.eja.2013.11.002.
  • Ial, I. A. L. 2008. Métodos físico-químicos para análise de alimentos. 1° ed, Vol. 1. São Paulo: Instituto Adolfo Lutz.
  • Inostroza-Blancheteau, C., F. Aquea, M. Reyes-Díaz, M. Alberdi, and P. Arce-Johnson. 2011. Identification of aluminum-regulated genes by cDNA-AFLP analysis of roots in two contrasting genotypes of highbush blueberry (Vaccinium corymbosum L.). Molecular biotechnology 49 (1):32–41. doi: 10.1007/s12033-010-9373-3.
  • Jagodzinski, A. M., and I. Kalucka. 2011. Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology 66:71–84.
  • Janjanin, D., M. Karoglan, M. H. Ćustić, M. Bubola, M. Osrečak, and I. Palčić. 2016. Response of ‘Italian Riesling’ leaf nitrogen status and fruit composition (Vitis vinifera L.) to foliar nitrogen fertilization. HortScience 51 (3):262–7. doi: 10.21273/HORTSCI.51.3.262.
  • Ju, Z. Y., and L. R. Howard. 2003. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry 51 (18):5207–13. doi: 10.1021/JF0302106.
  • Kelly, M., W. G. Giese, C. Velasco-Cruz, L. Lawson, S. Ma, M. Wright, and B. Zoecklein. 2017. Effect of foliar nitrogen and sulfur on petit manseng (Vitis vinifera L.) grape composition. Journal of Wine Research 28 (3):165–80. doi: 10.1080/09571264.2017.1324774.
  • Kou, L., D. Guo, H. Yang, W. Gao, and S. Li. 2015. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China. Plant and Soil 391 (1–2):207–18. doi: 10.1007/s11104-015-2420-x.
  • Kou, L., W. Chen, W. Gao, H. Yang, H. Wang, and S. Li. 2015. Effects of mixture of branch order-based roots and nitrogen addition on root decay in a subtropical pine plantation. Biology and Fertility of Soils 51 (8):947–57. doi: 10.1007/s00374-015-1040-1.
  • Krouk, G., B. Lacombe, A. Bielach, F. Perrine-Walker, K. Malinska, E. Mounier, K. Hoyerova, P. Tillard, S. Leon, K. Ljung, et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18 (6):927–37. doi: 10.1016/J.DEVCEL.2010.05.008.
  • Lee, H.-J., J.-H. Ha, S.-G. Kim, H.-K. Choi, Z. H. Kim, Y.-J. Han, J.-I. Kim, Y. Oh, V. Fragoso, K. Shin, et al. 2016. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling 9 (452):1–8. doi: 10.1126/scisignal.aaf6530.
  • Li, S. X., Z. H. Wang, and B. A. Stewart. 2013. Responses of crop plants to ammonium and nitrate N. Advances in Agronomy 118:205–397. doi: 10.1016/B978-0-12-405942-9.00005-0.
  • Lima, J. E., S. Kojima, H. Takahashi, and N. von Wirén. 2010. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER 1;3-dependent manner. The Plant Cell 22 (11):3621–33. doi: 10.1105/TPC.110.076216.
  • Lorensini, F., C. A. Ceretta, E. Girotto, J. B. Cerini, C. R. Lourenzi, L. De Conti, M. M. Trindade, G. W. d Melo, and G. Brunetto. 2012. Lixiviação e volatilização de nitrogênio em um Argissolo cultivado com videira submetida à adubação nitrogenada. Ciência Rural 42 (7):1173–9. doi: 10.1590/S0103-84782012005000038.
  • Lorensini, F., C. A. Ceretta, L. De Conti, P. A. A. Ferreira, M. K. L. Dantas, and G. Brunetto. 2017. Nitrogen fertilization in the growth phase of “Chardonnay” and “Pinot Noir” vines and nitrogen forms in sandy soil of the Pampa Biome. Revista Ceres 64 (4):433–40. https://www.proquest.com/openview/4a1c341ff30ca224e3f1cb55fc13460e/1?pq-origsite=gscholar&cbl=2030545. doi: 10.1590/0034-737x201764040013.
  • Miotto, A., T. Tiecher, J. Kaminski, G. Brunetto, L. De Conti, T. L. Tiecher, A. P. Martins, and D. Rheinheimer dos Santos. 2020. Soil acidity and aluminum speciation affected by liming in the conversion of a natural pasture from the Brazilian Campos Biome into no-tillage system for grain production. Archives of Agronomy and Soil Science 66 (2):138–51. doi: 10.1080/03650340.2019.1605164.
  • Moriwaki, T., R. Falcioni, F. A. O. Tanaka, K. A. K. Cardoso, L. A. Souza, E. Benedito, M. R. Nanni, C. M. Bonato, and W. C. Antunes. 2019. Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption. Plant Science: An International Journal of Experimental Plant Biology 278:1–11. doi: 10.1016/J.PLANTSCI.2018.10.012.
  • Mounier, E., M. Pervent, K. Ljung, A. Gojon, and P. Nacry. 2014. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant, Cell & Environment 37 (1):162–74. doi: 10.1111/pce.12143.
  • Ortiz-Lopez, A., H. C. Chang, and D. R. Bush. 2000. Amino acid transporters in plants. Biochimica Et Biophysica Acta 1465 (1–2):275–80. doi: 10.1016/S0005-2736(00)00144-9.
  • Othman, Y. A., and D. Leskovar. 2019. Nitrogen management influenced root length intensity of young olive trees. Scientia Horticulturae 246:726–33. doi: 10.1016/j.scienta.2018.11.052.
  • Pii, Y., A. Aldrighetti, F. Valentinuzzi, T. Mimmo, and S. Cesco. 2019. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. Journal of Experimental Botany 70 (4):1313–24. doi: 10.1093/JXB/ERY433.
  • Pii, Y., M. Alessandrini, K. Guardini, A. Zamboni, Z. Varanini, Y. Pii, … Z. Varanini. 2014. Induction of high-affinity NO3– uptake in grapevine roots is an active process correlated to the expression of specific members of the NRT2 and plasma membrane H+-ATPase gene families. Functional Plant Biology: FPB 41 (4):353–65. doi: 10.1071/FP13227.
  • R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria. doi: 10.1016/j.dendro.2008.01.002.
  • Radville, L., T. L. Bauerle, L. H. Comas, K. A. Marchetto, A. N. Lakso, D. R. Smart, R. M. Dunst, and D. M. Eissenstat. 2016. Limited linkages of aboveground and belowground phenology: A study in grape. American Journal of Botany 103 (11):1897–911. doi: 10.3732/ajb.1600212.
  • Remans, T., P. Nacry, M. Pervent, S. Filleur, E. Diatloff, E. Mounier, P. Tillard, B. G. Forde, and A. Gojon. 2006. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America 103 (50):19206–11. doi: 10.1073/PNAS.0605275103.
  • Riaz, M., L. Yan, X. Wu, S. Hussain, O. Aziz, and C. Jiang. 2018. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review. Ecotoxicology and Environmental Safety 165:25–35. doi: 10.1016/J.ECOENV.2018.08.087.
  • Sadras, V. O., and M. A. Moran. 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research 18 (2):115–22. doi: 10.1111/j.1755-0238.2012.00180.x.
  • Silva, A. A. da, and Delatorre, C. A. 2009. Alterações na arquitetura de raiz em resposta à disponibilidade de fósforo e nitrogênio. Revista de Ciências Agroveterinárias 8 (2):152–63. https://www.periodicos.udesc.br/index.php/agroveterina.ria/article/view/5324.
  • Sofo, A., V. Nuzzo, G. Tataranni, M. Manfra, M. De Nisco, and A. Scopa. 2012. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.). Journal of Plant Physiology 169 (11):1023–31. doi: 10.1016/J.JPLPH.2012.03.007.
  • Soil Survey Staff. 2014. Keys to Soil Taxonomy (12° ed). Recuperado de. https://books.google.com.br/books?hl=pt-BR&lr=&id=CuWEKWc1wIgC&oi=fnd&pg=PP7&dq=Keys+to+Soil+Taxonomy&ots=Mg60CBvr4M&sig=jKp5rqKaoLKlyMTpcpD69P4nLsI#v=onepage&q=KeystoSoilTaxonomy&f=false
  • Spayd, S. E., C. W. Nagel, and C. G. Edwards. 1995. Yeast growth in riesling juice as affected by vineyard nitrogen fertilization. American Journal of Enology and Viticulture 46 (1): 49–55.
  • Steenwerth, K. L., and K. M. Belina. 2010. Vineyard weed management practices influence nitrate leaching and nitrous oxide emissions. Agriculture, Ecosystems & Environment 138 (1–2):127–31. doi: 10.1016/j.agee.2010.03.016.
  • Stefano, E., D. Di, E. N. Agyei, C. Njoku, and C. Udenigwe. 2018. Plant RuBisCo: An underutilized protein for food applications. Journal of the American Oil Chemists’ Society 95 (8):1063–74. doi: 10.1002/aocs.12104.
  • Tedesco, M. J., C. Gianello, C. A. Bissani, H. Bohnen, and S. J. Volkweiss. 1995. Soil, plant and other material analysis. Porto Alegre.
  • Terrier, N., C. Poncet-Legrand, and V. Cheynier. 2009. Flavanols, flavonols and dihydroflavonols. In Wine chemistry and biochemistry, 463–507, New York. doi: 10.1007/978-0-387-74118-5_22.
  • Tomasi, N., R. Monte, Z. Varanini, S. Cesco, and R. Pinton. 2015. Induction of nitrate uptake in Sauvignon Blanc and Chardonnay grapevines depends on the scion and is affected by the rootstock. Australian Journal of Grape and Wine Research 21 (2):331–8. doi: 10.1111/ajgw.12137.
  • Viero, F., C. Bayer, S. Mara Vieira Fontoura, R. Paulo de Moraes, and A. Professor. 2014. Ammonia volatilization from nitrogen fertilizers in no-till wheat and maize in shouthern Brazil. Revista Brasileira de Ciência do Solo 38:1515–25.
  • Vilanova, M., M. Fandiño, S. Frutos-Puerto, and J. J. Cancela. 2019. Assessment fertigation effects on chemical composition of Vitis vinifera L. cv. Albariño. Food Chemistry 278:636–43. doi: 10.1016/J.FOODCHEM.2018.11.105.
  • Xu, G., X. Fan, and A. J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153–82. doi: 10.1146/annurev-arplant-042811-105532.
  • Xuan, W., T. Beeckman, and G. Xu. 2017. Plant nitrogen nutrition: Sensing and signaling. Current Opinion in Plant Biology 39:57–65. doi: 10.1016/J.PBI.2017.05.010.
  • Yan, G., F. Chen, X. Zhang, J. Wang, S. Han, Y. Xing, and Q. Wang. 2017. Spatial and temporal effects of nitrogen addition on root morphology and growth in a boreal forest. Geoderma 303:178–87. doi: 10.1016/j.geoderma.2017.05.030.
  • Yu, X., B. Wang, C. Zhang, W. Xu, J. He, L. Zhu, and S. Wang. 2012. Effect of root restriction on nitrogen levels and glutamine synthetase activity in ‘Kyoho’ grapevines. Scientia Horticulturae 137:156–63. doi: 10.1016/j.scienta.2012.01.025.
  • Zambrosi, F. C. B., D. Mattos, R. M. Boaretto, J. A. Quaggio, T. Muraoka, and J. P. Syvertsen. 2012. Contribution of phosphorus (32P) absorption and remobilization for citrus growth. Plant and Soil 355 (1–2):353–62. doi: 10.1007/s11104-011-1107-1.
  • Zhou, P., F. Yang, X. Ren, B. Huang, and Y. An. 2014. Phytotoxicity of aluminum on root growth and indole-3-acetic acid accumulation and transport in alfalfa roots. Environmental and Experimental Botany 104:1–8. doi: 10.1016/j.envexpbot.2014.02.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.