81
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characterization of phosphate solubilizing Pseudomonas stutzeri for nodulation in chickpea

, , &
Pages 3018-3030 | Received 04 Dec 2020, Accepted 08 Nov 2022, Published online: 26 Dec 2022

References

  • Abbas, A. G., M. A. Seyyed, H. A. Alikhani, I. Allahdadi, and M. H. Arzanesh. 2007. Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World Journal of Agricultural Sciences 3:523–9. doi: 10.0000/1.1.415.3992.
  • Alikhani, H. A., R. N. Saleh, and H. Antoun. 2006. Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil 287 (1-2):35–41. doi: 10.1007/s11104-006-9059-6..
  • Berendsen, R. L., C. M. Pieterse, and P. A. Bakker. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17 (8):478–86. doi: 10.1016/j.tplants.2012.04.001.
  • Chakraborty, U., B. Chakraborty, and M. Basnet. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology 46 (3):186–95. doi: 10.1002/jobm.200510050.
  • Chauhan, H., D. J. Bagyaraj, G. Selvakumar, and S. P. Sundaram. 2015. Novel plant growth promoting rhizobacteria-Prospects and potential. Applied Soil Ecology 95:38–53. doi: 10.1007/s13199-019-00602-w.
  • Edi-Premono, M., A. M. Moawad, and P. L. G. Vlek. 1996. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesia Journal Crop Science 11:13–23.
  • Fankem, H., N. Dieudonne, D. Annette, M. Wolfgang, and X. Francois. 2006. Occurance and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeisguinensis) rhizosphere in Cameroon. African Journal of Biotechnology 5 (24):2450–60.
  • Gaind, S., and A. C. Gaur. 1991. Therotolerant PSMs and their interaction with mung bean. Plant and Soil 133 (1):141–9. doi: 10.1007/BF00011908.
  • Goenadi, D., H. Siswanto, and Y. Sugiarto. 2000. Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Science Society of America Journal 64 (3):927–32. doi: 10.2136/sssaj2000.643927x.
  • Gupta, S. C. 2006. Effect of combined inoculation on nodulation, nutrient uptake and yield of chickpea in Vertisol. Journal of the Indian Society of Soil Science 54:251–4.
  • Gyaneshwar, P., G. N. Kumar, L. J. Parekh, and P. S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245 (1):83–93. doi: 10.1023/A:1020663916259.
  • Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Stanley, and S. T. Williams. 1994. Bergey’s manual of determinative bacteriology, 9th ed. Baltimore, MD: Williams & Wilkins.
  • Kannapiran, E., and V. Sri Ramkumar. 2011. Isolation of phosphate Solubilizing bacteria from sediments of Thondi coast, Palk Strait, Southeast coast of India. Annals of Biological Research 2 (5):157–63.
  • Khan, A. K., G. Jilani, M. S. Akhare, S. M. S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Journal of Agricultureand Biological Sciences 1 (1):48–58.
  • Khan, M. I., M. J. Afzal, S. Bashir, M. Naveed, S. Anum, S. A. Cheema, A. Wakeel, M. Sanaullah, M. H. Ali, and Z. Chen. 2021. Improving nutrient uptake, growth, yield and protein content in chickpea by the co-addition of phosphorus fertilizers, organic manures, and bacillus sp. Mn-54. Agronomy 11 (3):436. doi: 10.3390/agronomy11030436.
  • Khan, M. S., A. Zaidi, and E. Ahmad. 2014. Mechanism of phosphate solubilisation and physiological functions of phosphate-solubilizing microorganisms. In Phosphate Solubilizing Microorganisms, 34–62. Springer International Publishing.
  • Laharia, G. S., V. Apotikar, A. B. Age, P. A. Gite, and D. P. Deshmukh. 2019. Effect of phosphorus levels with PSB on yield, nutrient use efficiency and uptake of nutrients by chickpea. Journal of Pharmacognosy and Phytochemistry 8 (3):3182–5.
  • Lal, L. 2002. Phosphatic biofertilizers, 224. Udaipur, India: Agrotech Publication Academy.
  • Manas, R. S., K. Laxminarayana, and R. C. Ramesh. 2012. Phosphorus solubilization by thermotolerant Bacillus subtilis isolated from cow dung microflora. Agricultural Research 1 (3):273–9.
  • Mehta, P., A. Walia, S. Kulshrestha, A. Chauhan, and C. K. Shirkot. 2015. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology 55 (1):33–44.
  • Narula, N., K. Kukreja, and K. Lakshminarayana. 2002. Phosphate solubilization by soil isolates of Azotobacter chroococcum and their survival at different temperature. Journal of Agriculture in the Tropics and Subtropics 103 (1):81–7.
  • Oufdou, K., N. Bechtaoui, A. El Alaoui, L. Benidire, K. Daoui, and M. Göttfert. 2016. Symbiotic rhizobacteria for improving the agronomic effectiveness of phosphate fertilizers. Procedia Engineering 138:325–31. doi: 10.1016/j.proeng.2016.02.092.
  • Paul, D., and S. N. Sinha. 2013. Bacteria showing phosphate solubilizing efficiency in river sediment. Electronic Journal of Biosciences 1:1–5.
  • Paul, D., and S. N. Sinha. 2015. Biological removal of phosphate using phosphate solubilizing bacterial consortium from synthetic wastewater: a laboratory scale. Environment Asia 8:1–8.
  • Paul, D., and S. N. Sinha. 2017. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga. Annals of Agrarian Science 15 (1):130–6. doi: 10.1016/j.aasci.2016.10.001.
  • Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–70.
  • Puente, M. E., Y. Bashan, C. Y. Li, and V. K. Lebsky. 2004. Microbial populations and activities in the rhizoplane of rock- weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biology (Stuttgart, Germany) 6 (5):629–42. doi: 10.1055/s-2004-821100.
  • Richardson, A., J. M. Barea, A. McNeill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321 (1-2):305–39. doi: 10.1007/s11104-009-9895-2.
  • Sanjotha, G., and M. Sudheer. 2016. Isolation, screening and characterization of phosphate solubilizing bacteria from Karwar Costal Region. International Journal of Research Studies in Microbiology and Biotechnology (IJRSMB) 2 (2):1–6. doi: 10.20431/2454-9428.0202001.
  • Sharma, S. B., R. Z. Sayyed, M. H. Trivedi, and T. A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2 (1):587. doi: 10.1186/2193-1801-2-587.
  • Singh, R., and A. P. Singh. 2017. Effect of phosphorus, sulphur and biofertilizer on yield quality and uptake of nutrients in cowpea (Vigna unguiculata). Annals of Plant and Soil Research 19 (2):175–9.
  • Singh, S., Singh, H. Seema, Singh, J. P, and Sharma, V. K. 2014. Effect of integrated use of rock phosphate, molybdenum and phosphate solubilizing bacteria on lentil (Lens culinaris) in an alluvial soil. Indian Journal of Agronomy 59 (3):433–8.
  • Teymouri, M., J. Akhtari, M. Karkhane, and A. Marzban. 2016. Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest. Biocatalysis and Agricultural Biotechnology 5:168–72. doi: 10.1016/j.bcab.2016.01.012.
  • Wankhade, R. S., K. J. Kubde, K. Sunil, and M. R. Deshmukh. 2020. Effect of bioregulators on growth and yield of chickpea (Cicer arietinum L.). Journal of Pharmacognosy and Phytochemistry 9 (4):358–61.
  • Wasule, D. L., S. R. Wadyalkar, and A. N. Buldeo. 2003. Effect of phosphate solubilizing bacteria on the role of Rhizobium on nodulation by soybean. In First International Meeting on Microbial Phosphate Solubilization, 139–142. Dordrecht: Springer.
  • Zaman-Allah, M., B. Sifi, B. L. Taief, M. H. El-Aouni, and J. J. Drevon. 2007. Rhizobial inoculation and P fertilization response in common bean (Phaseolus vulgaris) under glasshouse and field conditions. Experimental Agriculture 43 (1):67–77. doi: 10.1017/S0014479706004236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.