126
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Nitric oxide regulates spearmint (Mentha spicata L.) responses to phenolic acids: growth, phenolics, and antioxidant capacity

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3053-3067 | Received 19 Jul 2022, Accepted 01 Nov 2022, Published online: 02 Feb 2023

References

  • Abdullahi, M. U., and R. T. Jasdanwal. 1991. Enlargement quotient to estimate leaf area in two cultivars of okra (Abelmoschus esculentus [L.] Moench). Journal of Agronomy and Crop Science 167 (3):167–9. doi: 10.1111/j.1439-037X.1991.tb00949.x.
  • Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105:121–6. doi: 10.1016/s0076-6879(84)05016-3.
  • Ahrabi, F., S. Enteshari, and A. Moradshahisup. 2011. Allelopathic potential of para-hydroxybenzoic acid and coumarin on canola: Talaieh cultivar. Journal of Medicinal Plants Research 5 (20):5104–9.
  • Akkol, E. K., F. Göger, M. Koşar, and K. H. Başer. 2008. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food chemistry 108 (3):942–9. doi: 10.1016/j.foodchem.2007.11.071.
  • Azad, N., M. Rezayian, H. Hassanpour, V. Niknam, and H. Ebrahimzadeh. 2021. Physiological mechanism of salicylic acid in Mentha pulegium L. under salinity and drought stress. Brazilian Journal of Botany 44 (2):359–69. doi: 10.1007/s40415-021-00706-y.
  • Babaei, S., V. Niknam, and M. Behmanesh. 2021. Nitric oxide induced carotenoid contents in Crocus sativus under salinity. Natural product Research 35 (5):888–92. doi: 10.1080/14786419.2019.1608544.
  • Badhani, B., N. Sharma, and R. Kakkar. 2015. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 5 (35):27540–57. doi: 10.1039/C5RA01911G.
  • Barkosky, R. R., and F. A. Einhellig. 2003. Allelopathic interference of plant-water relationships by para-hydroxybenzoic acid. Botanical Bulletin of Academia Sinica 44:53–8.
  • Baziramakenga, R., G. Leroux, and R. Simard. 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology 21 (9):1271–85. doi: 10.1007/BF02027561.
  • Berner, M., D. Krug, C. Bihlmaier, A. Vente, R. Müller, and A. Bechthold. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. Journal of Bacteriology 188 (7):2666–73. doi: 10.1128/JB.188.7.2666-2673.2006.
  • Blanch, G. P., M. C. Gómez-Jiménez, and M. L. Del Castillo. 2020. Exogenous salicylic acid improves phenolic content and antioxidant activity in table grapes. Plant foods for Human Nutrition (Dordrecht, Netherlands) 75 (2):177–83. doi: 10.1007/s11130-019-00793-z.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–54. doi: 10.1006/abio.1976.9999.
  • Cappellari, L. D., M. V. Santoro, A. Schmidt, J. Gershenzon, and E. Banchio. 2019. Improving phenolic total content and monoterpene in Mentha x piperita by using salicylic acid or methyl jasmonate combined with Rhizobacteria inoculation. International Journal of Molecular Sciences 21 (1):50. doi: 10.3390/ijms21010050.
  • Chen, L., L. Liao, S. Wang, Z. Huang, and F. Xiao. 2002. Effect of vanillin and P-hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings. The Journal of Applied Ecology 13 (10):1291–4.
  • Cheng, F., and Z. Cheng. 2016. Corrigendum: Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science 7:1697. doi: 10.3389/fpls.2016.01697.
  • Chotsaeng, N., C. Laosinwattana, and P. Charoenying. 2017. Herbicidal activities of some allelochemicals and their synergistic behaviors toward Amaranthus tricolor L. Molecules 22 (11):1841. doi: 10.3390/molecules22111841.
  • S. O. Duke. 2003. Ecophysiological aspects of allelopathy. Planta 217 (4):529–39. doi: 10.1007/s00425-003-1054-z.
  • Einhellig, F. A. 1995. Mechanism of action of allelochemicals in allelopathy, 96–116. Washington, WA: ACS Publications.
  • Ghareib, H. R., M. S. Abdelhamed, and O. H. Ibrahim. 2010. Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biology and Management 10 (1):64–72. doi: 10.1111/j.1445-6664.2010.00368.x.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant physiology 59 (2):315–8. doi: 10.1104/pp.59.2.315.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189–98. doi: 10.1016/0003-9861(68)90654-1.
  • Heldt, H. W., and B. Piechulla. 2011. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components. Plant biochemisty. 4th ed., 431–49. New York, NY: Academic Press.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. 2nd ed. 347, 1–39. California, CA: Circular California Agricultural Experiment Station.
  • Huang, C. Z., L. Xu, J. J. Sun, Z. H. Zhang, M. I. Fu, H. Y. Teng, and K. K. Yi. 2020. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture 19 (2):518–27. doi: 10.1016/S2095-3119(19)62781-4.
  • Inderjit. 1996. Plant phenolics in allelopathy. The Botanical Review 62 (2):186–202. doi: 10.1007/BF02857921.
  • Janda, T., G. Szalai, and M. Pál. 2020. Salicylic acid signalling in plants. International Journal of Molecular Sciences 21 (7):2655. doi: 10.3390/ijms21072655.
  • Jannesar, M., S. M. Seyedi, V. Niknam, E. G. Khorzoghi, and H. Ebrahimzadeh. 2022. Salicylic acid, as a positive regulator of isochorismate synthase, reduces the negative effect of salt stress on Pistacia vera L. by increasing photosynthetic pigments and inducing antioxidant activity. Journal of Plant Growth Regulation 41 (3):1304–15. doi: 10.1007/s00344-021-10383-6.
  • John, J., and S. Sarada. 2012. Role of phenolics in allelopathic interactions. Allelopathy Journal 29 (2):215–30.
  • Kidd, P., and J. Proctor. 2000. The growth response of ecotypes of Holcus lanatus L. from different soil types in northwestern Europe to phenolic acids. Plant Biology 2 (3):335–43. doi: 10.1055/s-2000-3706.
  • Kimani, B. G., E. B. Kerekes, C. Szebenyi, J. Krisch, C. Vágvölgyi, T. Papp, and M. Takó. 2021. In vitro activity of selected phenolic compounds against planktonic and biofilm cells of food-contaminating yeasts. Foods 10 (7):1652. doi: 10.3390/foods10071652.
  • Kong, J., Y. Dong, L. Xu, S. Liu, and X. Bai. 2014. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Botanical studies 55 (1):9–12. doi: 10.1186/1999-3110-55-9.
  • Lawrence, B. M. 2006. Mint: The genus Mentha. New York, NY: CRC press.
  • Lichtenthaler, H. K., and A. R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11 (5):591–2. doi: 10.1042/bst0110591.
  • Mahendran, G., S. K. Verma, and L. U. Rahman. 2021. The traditional uses, Phytochemistry and pharmacology of Spearmint (Mentha spicata L.): A review. Journal of Ethnopharmacology 278 (7):114266. doi: 10.1016/j.jep.2021.114266.
  • Makoi, J. H., and P. A. Ndakidemi. 2012. Allelopathy as protectant, defence and growth stimulants in legume cereal mixed culture systems. New Zealand Journal of Crop and Horticultural Science 40 (3):161–86. doi: 10.1080/01140671.2011.630737.
  • Singh, N. B., S. Khare, A. Singh, V. Yadav, R. K., and Yadav, Niharika. 2022. Attenuation of vanillic acid toxicity by foliar application with indole-3-acetic acid in tomato seedlings. International Journal of Vegetable Science 28 (3):211–32. doi: 10.1080/19315260.2021.1935387.
  • Ozfidan-Konakci, C., E. Yildiztugay, A. Yildiztugay, and M. Kucukoduk. 2019. Cold stress in soybean (Glycine max L.) roots: Exogenous gallic acid promotes water status and increases antioxidant activities. Botanica Serbica 43 (1):59–71. doi: 10.2298/BOTSERB1901059O.
  • Raymond, J., N. Rakariyatham, and J. Azanza. 1993. Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry 34 (4):927–31. doi: 10.1016/S0031-9422(00)90689-7.
  • Rezayian, M., H. Ebrahimzadeh, and V. Niknam. 2022. Metabolic and physiological changes induced by nitric oxide and its impact on drought tolerance in soybean. Journal of Plant Growth Regulation 14:1–4. doi: 10.1007/s00344-022-10668-4.
  • Rudolphi-Skórska, E., and A. Sieprawska. 2016. Adaptation of wheat cells to short-term ozone stress: The impact of α-tocopherol and gallic acid on natural and model membranes. Acta Physiologiae Plantarum 38 (4):1–11. doi: 10.1007/s11738-016-2102-1.
  • Sánchez-Chávez, E., R. Barrera-Tovar, E. Muñoz-Márquez, D. L. Ojeda-Barrios, and Á. Anchondo-Nájera. 2011. Effect of salicylic acid on biomass, photosynthetic activity, nutriment content and productivity of jalapeño pepper. Revista Chapingo Serie Horticultura XVII (4):63–8., doi: 10.5154/r.rchsh.2011.17.039.
  • Scavo, A., C. Abbate, and G. Mauromicale. 2019. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant and Soil 442 (1–2):23–48. doi: 10.1007/s11104-019-04190-y.
  • Sharma, A., B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi, and B. Zheng. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24 (13):2452. doi: 10.3390/molecules24132452.
  • Simontacchi, M., A. Galatro, F. Ramos-Artuso, and G. E. Santa-María. 2015. Plant survival in a changing environment: The role of nitric oxide in plant responses to abiotic stress. Frontiers in Plant Science 6:977. doi: 10.3389/fpls.2015.00977.
  • Singh, A., R. Gupta, and R. Pandey. 2017. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiology and Molecular Biology of Plants : An International Journal of Functional Plant Biology 23 (2):301–9. doi: 10.1007/s12298-017-0430-2.
  • Singh, N., K. Yadav, and N. Amist. 2013. Phytotoxic effects of cinnamic acid on cabbage (Brassica oleracea var. capitata). Journal of Stress Physiology & Biochemistry 9 (2):307–17.
  • Singh, N., K. Yadav, and N. Amist. 2014. Positive effects of nitric oxide on Solanum lycopersicum. Journal of Plant Interactions 9 (1):10–8. doi: 10.1080/17429145.2012.748937.
  • Singh, S., V. Kumar, D. Kapoor, S. Kumar, S. Singh, D. S. Dhanjal, S. Datta, J. Samuel, P. Dey, S. Wang, et al. 2020. Revealing on hydrogen sulfide and nitric oxide signals co‐ordination for plant growth under stress conditions. Physiologia Plantarum 168 (2):301–17. doi: 10.1111/ppl.13066.
  • Steenackers, W., I. El Houari, A. Baekelandt, K. Witvrouw, S. Dhondt, O. Leroux, N. Gonzalez, S. Corneillie, I. Cesarino, D. Inzé, et al. 2019. cis-Cinnamic acid is a natural plant growth-promoting compound. Journal of Experimental Botany 70 (21):6293–304. doi: 10.1093/jxb/erz392.
  • Sun, C., Y. Zhang, L. Liu, X. Liu, B. Li, C. Jin, and X. Lin. 2021. Molecular functions of nitric oxide and its potential applications in horticultural crops. Horticulture Research 8 (1):1–17. doi: 10.1038/s41438-021-00500-7.
  • Thiruvengadam, M., S. H. Kim, and I. M. Chung. 2015. Exogenous phytohormones increase the accumulation of health-promoting metabolites, and influence the expression patterns of biosynthesis related genes and biological activity in Chinese cabbage (Brassica rapa spp. pekinensis). Scientia Horticulturae 193:136–46. doi: 10.1016/j.scienta.2015.07.007.
  • Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science 151 (1):59–66. doi: 10.1016/S0168-9452(99)00197-1.
  • Wagner, G. J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology 64 (1):88–93. doi: 10.1104/pp.64.1.88.
  • Weatherley, P. 1950. Studies in the water relations of the cotton plant: I. The field measurement of water deficits in leaves. New Phytologist 49 (1):81–97. doi: 10.1111/j.1469-8137.1950.tb05146.x.
  • Weir, T. L., S. W. Park, and J. M. Vivanco. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology 7 (4):472–9. doi: 10.1016/j.pbi.2004.05.007.
  • Wendehenne, D., J. Durner, and D. F. Klessig. 2004. Nitric oxide: A new player in plant signalling and defence responses. Current opinion in Plant Biology 7 (4):449–55. doi: 10.1016/j.pbi.2004.04.002.
  • Xiong, J., L. An, H. Lu, and C. Zhu. 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230 (4):755–65. doi: 10.1007/s00425-009-0984-5.
  • Xuan, T. D., and D. T. Khang. 2018. Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 23 (3):620. doi: 10.3390/molecules23030620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.