267
Views
2
CrossRef citations to date
0
Altmetric
Reviews

A review on understanding the efficient source of balanced crop nutrition through nanotechnology in agriculture

ORCID Icon, ORCID Icon &
Pages 3221-3231 | Received 08 Jul 2022, Accepted 08 Feb 2023, Published online: 24 Feb 2023

References

  • Abd El-Aziz, M. E., D. M. Salama, S. M. M. Morsi, A. M. Youssef, and M. El-Sakhawy. 2021. Development of polymer composites and encapsulation technology for slow-release fertilizers. Reviews in Chemical Engineering 38 (5):603–16. doi: 10.1515/revce-2020-0044.
  • Acharya, P., G. K. Jayaprakasha, K. M. Crosby, J. L. Jifon, and B. S. Patil. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports 10:1–16. doi: 10.1038/s41598-020-61696-7.
  • Ahmed, R., A. B. D. Yusoff, M. Samad, M. K. Uddin, M. A. Quddus, and M. A. M. Hossain. 2021. Recent trends in the foliar spraying of Zinc nutrient and zinc oxide nanoparticles in tomato production. Agronomy 11:2074. doi: 10.3390/agronomy11102074.
  • Amenta, V., K. Aschberger, M. Arena, H. Bouwmeester, F. Botelho Moniz, P. Brandhoff, S. Gottardo, H. J. P. Marvin, A. Mech, L. Quiros Pesudo, et al. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology : RTP 73 (1):463–76. doi: 10.1016/j.yrtph.2015.06.016.
  • Anupam, M., I. Sinha, and R. Das. 2015. Application of Nanotechnology in Agriculture: Future Prospect, paper presented in conference at Mumbai.
  • Baruah, S., and J. Dutta. 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: A review. Environmental Chemistry Letters 7 (3):191–204. doi: 10.1007/s10311-009-0228-8.
  • Bhalla, D., and S. S. Mukhopadhyay. 2010. Eutrophication: Can nanophosphorus control this menace. Journal of Crop and Weed 6:13–6.
  • Capasso, L., M. Camatini, and M. Gualtieri. 2014. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicology Letters 226 (1):28–34. doi: 10.1016/j.toxlet.2014.01.040.
  • Chau, C. F., S. H. Wu, and G. C. Yen. 2007. The development of regulations for food nanotechnology. Trends in Food Science and Technology 18:269–80. doi: 10.1016/j.tifs.2007.01.007.
  • Dahoumane, S., C. Jeffryes, M. Mechouet, and S. Agathos. 2017. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering 4:14. doi: 10.3390/bioengineering4010014.
  • Day, W. 2005. Engineering precision into variable biological systems. Annals of Applied Biology 46:155–62. doi: 10.1111/j.1744-7348.2005.040064.x.
  • De Matteis, V. 2017. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5:29. doi: 10.3390/toxics5040029.
  • Dwivedi, S., Q. Saquib, A. A. Al-Khediary, and J. Musarrat. 2016. Understanding the role of nanomaterials in agriculture. In Microbial inoculants in sustainable agricultural productivity, eds. D. P. Singh, H. B. Singh, and R. Prabha, 271–88. New Delhi, India: Springer.
  • Giraldo, J., P. M. P. Landry, S. M. Faltermeier, T. P. McNicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, F. J. A. Brew, et al. 2014. Plant nanobionics approach to augment photosynthesis and biochemic al sensing. Nature Materials 13 (4):400–8. doi: 10.1038/nmat3890.
  • Gruere, G. P. 2012. Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy.37:191–8. doi: 10.1016/j.jhazmat.2014.05.079.
  • Gutierrez, F.J., M. L. Mussons, P. Gaton and R. Rojo. 2011. Nanotechnology and food industry. In Scientific, health and social aspects of the food industry, 95–128.
  • Hochella, M. F., D. W. Mogk, J. Ranville, and I. C. Allen. 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363:6434. doi: 10.1126/science.aau8299.
  • Ion, A. C., I. Ion, and A. Culetu. 2010. Carbon-based nanomaterials: Environmental applications. Politehnica University Bucharest 38:129–32.
  • Irshad, M. A., M. Z. U. Rehman, M. Anwar-Ul-Haq, M. Rizwan, R. Nawaz, M. B. Shakoor, L. Wijaya, M. N. Alyemeni, P. Ahmad, S. Ali, et al. 2021. Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk.: A field investigation. Journal of Hazardous Materials 415:125585. doi: 10.1016/j.jhazmat.2021.125585.
  • Jinghua, G. 2004. Synchrotron radiation, soft X-ray spectroscopy and nano-materials. Journal of Nanotechnology 1:193–225. doi: 10.1504/IJNT.2004.003729.
  • Khattak, A., F. Ullah, Z. K. Shinwari, and S. Mehmood. 2021. The effect of titanium dioxide nanoparticles and salicylic acid on growth and biodiesel production potential of sunflower (Helianthus annuus L.) under water stress. Pakistan Journal of Botany 53:1987–95. doi: 10.30848/PJB2021-6(42).
  • Khodakovskaya, M. V., K. de Silva, A. S. Biris, E. Dervishi, and H. Villagarcia. 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6 (3):2128–35. doi: 10.1021/nn204643g.
  • Khodakovskaya, M., E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, and A. S. Biris. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3 (10):3221–7. doi: 10.1021/nn900887m.
  • Khota, L. R., S. Sankarana, J. M. Majaa, R. Ehsania, and E. W. Schuster. 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection 35:64–70. doi: 10.1016/j.cropro.2012.01.007.
  • Kirchmann, H., T. Kätterer, and L. Bergström. 2008. Nutrient supply in organic agriculture—Plant availability, sources and recycling. In Organic crop production—Ambitions and limitations, eds. H. Kirchmann and L. Bergström, Doordrecht, The Netherlands: Springer.
  • Kitching, M., M. Ramani, and E. Marsili. 2015. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microbial Biotechnology 8 (6):904–17. doi: 10.1111/1751-7915.12151.
  • Knell, M. 2010. Nanotechnology and the sixth technological revolution. In Nanotechnology and the challenges of equity, equality and development, eds. S. E. Cozzens and J. M. Wetmore, 127–43. Dordrecht: Springer. doi: 10.1007/978-90-481-9615-9_8.
  • Knorr, W., I. Prentice, J. House, and E. Holland. 2005. Long-term Sensitivity of Soil Carbon Turnover to Warming. Nature 433 (7023):298–301. doi: 10.1038/nature03226.
  • Kolencik, M., D. Ernst, M. Urik, L. Bujdos, and Y. Qian. 2020. Foliar application of low concentration of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 10:1619. doi: 10.3390/nano10081619.
  • Kumari, S. C., V. Dhand, and P. N. Padma. 2021. Green synthesis of metallic nanoparticles: A review. In Nanomaterials, Academic Press, eds. R. Praveen Kumar, B. Bharathiraja, 259–81. doi: 10.1016/B978-0-12-822401-4.00022-2.
  • Kuzma, J. 2007. Moving forward responsibly: Oversight for the nanotechnology – Biology interface. Journal of Nanoparticles Research 9:165–82. doi: 10.1007/s11051-006-9151-0.
  • Lee, S., K. H. Nam, J. K. Seong, and D. Y. Ryu. 2018. Molybdate attenuates lipid accumulation in the livers of mice fed a diet deficient in methionine and choline. Biological & Pharmaceutical Bulletin 41 (8):1203–10. doi: 10.1248/bpb.b18-00020.
  • Love, J. C., L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides. 2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews 105 (4):1103–69. doi: 10.1021/cr0300789.
  • Ma, X., J. Geisler-Lee, Y. Deng, and A. Kolmakov. 2010. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. The Science of the Total Environment 408 (16):3053–61. doi: 10.1016/j.scitotenv.2010.03.031.
  • Manjunatha, S. B., D. P. Biradar, and Y. R. Aladakatti. 2016. Nanotechnology and its applications in agriculture: A review. Journal of Farm Sciences 29 (1):1–13.
  • Maysinger, D. 2007. Nanoparticles and cells: Good comparison and doomed partnerships. Organic & Biomolecular Chemistry 5 (15):2335–42. doi: 10.1039/b704275b.
  • Mendel, R. R. 2013. The molybdenum cofactor. The Journal of Biological Chemistry 288 (19):13165–72. doi: 10.1074/jbc.R113.455311.
  • Miller, G., and S. Kinnear. 2007. Nanotechnology the new threat to food. Clean Food Organization 4:1–7.
  • Moaveni, P., H. A. Farahani, and K. Maroufi. 2011. Effect of TiO2 nanoparticles spraying on barley (Hordeum vulgare L.) under field conditions. Advances in Environmental Biology 5:2220–3.
  • Mukhopadhyay, S. S. 2014. Nanotechnology in agriculture: Prospects and constraints. Nanotechnology, Science and Applications 7:63–71. doi: 10.2147/NSA.S39409.
  • Naderi, M. R., and A. Danesh-Shahraki. 2013. Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences 5 (19):2229–35.
  • Nair, R., S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, and D. S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Science 179:154–63. doi: 10.1016/j.plantsci.2010.04.012.
  • Navrotsky, A. 2000. Nanomaterials in the environment, agriculture, and technology (NEAT). Journal of Nanoparticle Research 2:321–3. doi: 10.1023/A:1010007023813.
  • Neto, M. E., D. W. Britt, L. M. Lara, A. Cartwright, R. F. dos Santos, T. T. Inoue, and M. A. Batista. 2020. Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy 10:307. doi: 10.3390/agronomy10020307.
  • Nuruzzaman, M., M. M. Rahman, Y. Liu, and R. Naidu. 2016. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry 64 (7):1447–83. doi: 10.1021/acs.jafc.5b05214.
  • Ortega-Ortiz, H., J. M. Gaucin-Delgado, P. Preciado-Rangel, M. Fortis-Hernandez, L. G. Hernandez-Montiel, E. D. L. Cruz-Lazaro, L, and C. Liliana. 2022. Copper oxide nanoparticles biosynthetized improve germination and bioactive compounds in wheat sprouts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50 (1):12657. doi: 10.15835/nbha50112657.
  • Pandey, G., and P. Jain. 2020. Assessing the nanotechnology on the ground of costs, benefits and risks. Journal of Basic and Applied Sciences 9:63.
  • Pasala, R., R. Kulasekaran, B. B. Pandey, C. H. L. N. Manikanta, K. Gopika, P. S. J. Daniel, S. Elthury, and P. Yadav. 2022. Recent advances in micronutrient foliar spray for enhancing crop productivity and managing abiotic stress tolerance. In Plant nutrition and food security in the era of climate change, eds. V. Kumar, A. K. Srivastava, and P. Suprasanna, 377–98, Academic Press. doi: 10.1016/B978-0-12-822916-3.00008-1.
  • Perez-de-Luque, A., and D. Rubiales. 2009. Nanotechnology for parasitic plant control. Pest Management Science 65 (5):540–5. doi: 10.1002/ps.1732.
  • Pramanik, P., P. Krishnan, A. Maity, N. Mridha, A. Mukherjee, and V. Rai. 2020. Application of nanotechnology in agriculture. Environmental Nanotechnology 4:317–48.
  • Prasad, R., A. Bhattacharyya, and Q. D. Nguyen. 2017. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology 8:1014–35. doi: 10.3389/fmicb.2017.01014.
  • Prasad, R., V. Kumar, and K. S. Prasad. K. S. 2014. Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology 13:705–13. doi: 10.5897/AJBX2013.13554.
  • Prasad, T. N. V. K. V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. Reddy, S. Sreenivasan, S. Panikkanvalappil, and P. Thalappil. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35:905–27. doi: 10.1080/01904167.2012.663443.
  • Presley, D. R., M. D. Ransom, G. J. Kluitenberg, and P. R. Finnell. 2004. Effects of thirty years of irrigation on the genesis and morphology of two semi-arid soils in Kansas. Soil Science Society of America Journal 68:1916–26. doi: 10.2136/sssaj2004.1916.
  • Raliya, R., and J. C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research 2:48–57. doi: 10.1007/s40003-012-0049-z.
  • Reynolds, G. H. 2003. Nanotechnology and regulatory policy: Three futures. Harvard Journal of Law and Technology 17:179.
  • Rico, C. M., S. Majumdar, M. Duarte-Gardea, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry 59 (8):3485–98. doi: 10.1021/jf104517j.
  • Rossi, L., L. N. Fedenia, H. Sharifan, X. Ma, and L. Lombardini. 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry : PPB 135:160–6. doi: 10.1016/j.plaphy.2018.12.005.
  • Sadak, M. S., and B. A. Bakry. 2020. Zinc-oxide and nano ZnO effects on growth, some biochemical aspects, yield quantity and quality of flax (Linum uitatissimum L.) in absence and presence of compost under sandy soil. Bulletin of National Research Centre 44:98.
  • Salama, D. M., M. E. Abd El-Aziz, E. A. Shaaban, S. A. Osman, and M. S. Abd El-Wahed. 2022a. The impact of nanofertilizer on agro-morphological criteria, yield, and genomic stability of common bean (Phaseolus vulgaris L. )Scientific Reports 12:18552.
  • Salama, D. M., M. E. Abd El-Aziz, F. A. Rizk, and M. S. A. Abd Elwahed. 2021. Applications of nanotechnology on vegetable crops. Chemosphere 266:129026. doi: 10.1016/j.chemosphere.2020.129026.
  • Salama, D. M., M. E. Abd El-Aziz, S. A. Osman, M. S. Abd Elwahed, and E. A. Shaaban. 2022b. Foliar spraying of MnO2-NPs and its effect on vegetative growth, production, genomic stability, and chemical quality of the common dry bean. Arab Journal of Basic and Applied Sciences 29 (1):26–39. doi: 10.1080/25765299.2022.2032921.
  • Sastry, K., H. B. Rashmi, and N. H. Rao. 2010. Nanotechnology patents as R&D indicators for disease management strategies in agriculture. Journal of Intellectual Property Rights 15:197–205.
  • Senturk, A., B. Yalcyn, and S. Otles. 2013. Nanotechnology as a food perspective. Journal of Nanomaterials and Molecular Nanotechnology2 (6) doi: 10.4172/2324-8777.1000125.
  • Shebl, A., A. Hassan, D. M. Salama, M. Abd El-Aziz, and M. S. Abd Elwahed. 2019. Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. Journal of Nanomaterials 4:1–11. doi: 10.1155/2019/3476347.
  • Singh, G., and H. Rattanpal. 2014. Use of nanotechnology in horticulture: A review. International Journal of Agricultural Sciences and Veterinary Medicine 2:34–42.
  • Smedley, P. L., and D. G. Kinniburgh. 2017. Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry 84:387–432. doi: 10.1016/j.apgeochem.2017.05.008.
  • Sultan, Y., R. Walsh, C. M. Monreal, and M. C. deRosa. 2009. Preparation of functional Aptamer films using layer-by-layer self-assembly. Biomacromolecules 10 (5):1149–54. doi: 10.1021/bm8014126.
  • Swamy, V. S., and R. Prasad. 2012. Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. Journal of Optoelectronic and Biomedical Materials 4 (3):53–9.
  • Tarafdar, J. C., Y. Xiong, W. N. Wang, D. Quinl, and P. Biswas. 2012. Standardization of size, shape and concentration of nanoparticle for plant application. Applied Biological Research 14 (2):138–44.
  • Thornton, P. K. 2010. Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 365 (1554):2853–67. doi: 10.1098/rstb.2010.0134.
  • Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418 (6898):671–7. doi: 10.1038/nature01014.
  • Torney, F., B. G. Trewyn, V. S. Lin, and K. Wang. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology 2 (5):295–300. doi: 10.1038/nnano.2007.108.
  • Umar, W., M. K. Hameed, T. Aziz, M. A. Maqsood, H. M. Bilal, and N. Rasheed. 2021. Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Archives of Agronomy and Soil Science 67:1164–76. doi: 10.1080/03650340.2020.1782893.
  • Verma, P., S. Bodh, and S. Thakur. 2019. Nanotechnology in agriculture: A review. International Journal of Chemical Studies 7 (4):488–91.
  • Veronica, N., T. Guru, R. Thatikunta, and S. N. Reddy. 2015. Role of Nano fertilizers in agricultural farming. International Journal of Environmental Science and Technology 1 (3):1–3.
  • Yadav, K. K., J. K. Singh, N. Gupta, and V. Kumar. 2017. A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. Journal of Medical Engineering and Sciences 8:2028–508.
  • Zhao, L., J. A. Hernandez-Viezcas, J. R. Peralta-Videa, S. Bandyopadhyay, B. Peng, B. Munoz, A. A. Keller, and J. L. Gardea-Torresdey. 2013. ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environmental Science. Processes & Impacts 15 (1):260–6. doi: 10.1039/C2EM30610G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.