58
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of selenium on salt signaling and tolerance in Salicornia iranica

& ORCID Icon
Pages 3121-3141 | Received 06 Oct 2022, Accepted 07 Mar 2023, Published online: 20 Mar 2023

References

  • Ahmad, S. T., N. A. Sima, and H. H. Mirzaei. 2013. Effects of sodium chloride on physiological aspects of Salicornia persica growth. Journal of Plant Nutrition 36:401–14. doi: 10.1080/01904167.2012.746366.
  • Arora, D., and S. C. Bhatla. 2015. Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress. Plant Signaling & Behavior 10: E 1071753. doi: 10.1080/15592324.2015.1071753.
  • Astier, J., and C. Lindermayr. 2012. Nitric oxide-dependent posttranslational modification in plants: An update. International Journal of Molecular Sciences 13:15193–208. doi: 10.3390/ijms131115193.
  • Benjamin, J. J., L. Lucini, S. Jothiramshekar, and A. Parida. 2019. Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiology and Biochemistry 135:528–45. doi: 10.1016/j.plaphy.2018.11.006.
  • Cárdenas-Pérez, S., A. Piernik, J. J. Chanona-Pérez, M. N. Grigore, and M. J. Perea-Flores. 2021. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental Experimental Botany 191:104606. doi: 10.1016/j.envexpbot.2021.104606.
  • Chatrenoor, T., and H. Akhani. 2021. An integrated morpho‐molecular study of Salicornia (Amaranthaceae‐Chenopodiaceae) in Iran proves Irano‐Turanian region the major center of diversity of annual glasswort species. Taxon 70:989–1019. doi: 10.1002/tax.12538.
  • Colmenero-Flores, J. M., J. D. Franco-Navarro, P. Cubero-Font, P. Peinado-Torrubia, and M. A. Rosales. 2019. Chloride as a beneficial macronutrient in higher plants: New roles and regulation. International Journal of Molecular Sciences 20:4686. doi: 10.3390/ijms20194686.
  • Davy, A. J., G. F. Bishop, and C. S. Costa. 2001. Salicornia L.(Salicornia pusilla J. woods, S. ramosissima J. woods, S. europaea L., S. obscura PW ball & tutin, S. nitens PW ball & tutin, S. fragilis PW ball & tutin and S. dolichostachya moss). Journal of Ecology 89:681–707. doi: 10.1046/j.0022-0477.2001.00607.x.
  • Diao, M., L. Ma, J. Wang, J. Cui, A. Fu, and H. Y. Liu. 2014. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation 33:671–82. doi: 10.1007/s00344-014-9416-2.
  • Ellouzi, H., K. Ben Hamed, J. Cela, S. Munné‐Bosch, and C. Abdelly. 2011. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum 142:128–43. doi: 10.1111/j.1399-3054.2011.01450.x.
  • Erturk, H. N. 1999. Responses of superoxide dismutases to oxidative stress in Arabidopsis thaliana. Dissertation, Virginia Polytechnic Institute and State University.
  • Fatima, A., T. Husain, M. Suhel, S. M. Prasad, and V. P. Singh. 2022. Implication of nitric oxide under salinity stress: The possible interaction with other signaling molecules. Journal of Plant Growth Regulation 41:163–77. doi: 10.1007/s00344-020-10255-5.
  • Feng, R., C. Wei, and S. Tu. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental Experimental Botany 87:58–68. doi: 10.1016/j.envexpbot.2012.09.002.
  • Feng, X., and Q. Ma. 2021. Transcriptome and proteome profiling revealed molecular mechanism of selenium responses in bread wheat (Triticum aestivum L.). BMC Plant Biology 21:1–6. doi: 10.1186/s12870-021-03368-w.
  • Flowers, T. J., and T. D. Colmer. 2008. Salinity tolerance in halophytes. New Phytologist 179:945–63. doi: 10.1111/j.1469-8137.2008.02531.x.
  • Geilfus, C. M. 2018. Chloride: From nutrient to toxicant. Plant Cell Physiology 59:877–86. doi: 10.1093/pcp/pcy071.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59 (2):309–14. doi: 10.1104/pp.59.2.309.
  • Gui, J. Y., S. Rao, X. Huang, X. Liu, S. Cheng, and F. Xu. 2022. Interaction between selenium and essential micronutrient elements in plants: A systematic review. Science of the Total Environment 10:158673. doi: 10.1016/j.scitotenv.2022.158673.
  • Gupta, M., and S. Gupta. 2017. An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science 7:2074. doi: 10.3389/fpls.2016.02074.
  • Hajiboland, R. 2012. Effect of micronutrient deficiencies on plants stress responses. In Abiotic stress responses in plants, ed. P. Ahmad and M. Prasad, 283–329. New York, NY: Springer. doi: 10.1007/978-1-4614-0634-1_16.
  • Hajiboland, R., S. Bahrami-Rad, H. Akhani, and C. Poschenrieder. 2018. Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. Journal of Plant Research 131:1029–46. doi: 10.1007/s10265-018-1053-6.
  • Hajiboland, R., S. Bahrami-Rad, N. Zeinalzade, E. Atazadeh, H. Akhani, and C. Poschenrieder. 2020a. Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant and Soil 448:315–34. doi: 10.1007/s11104-020-04436-0.
  • Hajiboland, R., S. Rahmat, N. Zeinalzadeh, N. Farsad-Akhtar, and M. A. Hosseinpour-Feizi. 2019. Senescence is delayed by selenium in oilseed rape plants. Journal of Trace Elements in Medicine and Biology 55:96–106. doi: 10.1016/j.jtemb.2019.06.005.
  • Hajiboland, R., and N. Sadeghzade. 2014. Effect of selenium on CO2 and NO3− assimilation under low and adequate nitrogen supply in wheat (Triticum aestivum L.) Photosynthetica 52:501–10. doi: 10.1007/s11099-014-0058-1.
  • Hajiboland, R., N. Sadeghzadeh, D. Bosnic, P. Bosnic, R. Tolrà, C. Poschenrieder, and M. Nikolic. 2020b. Selenium activates components of iron acquisition machinery in oilseed rape roots. Plant and Soil 452:569–86. doi: 10.1007/s11104-020-04599-w.
  • Hartikainen, H. 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology 18:309–18. doi: 10.1016/j.jtemb.2005.02.009.
  • Hasanuzzaman, M., K. Nahar, M. S. Hossain, J. A. Mahmud, A. Rahman, M. Inafuku, H. Oku, and M. Fujita. 2017. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Sciences 18:200. doi: 10.3390/ijms18010200.
  • Hatier, J. H., and K. S. Gould. 2009. Anthocyanin function in vegetative organs. In Anthocyanins: Biosynthesis, functions, and applications, ed. K. Gould, K. Davies, C. Winefield, 1–9. New York, NY: Springer. doi: 10.1007/978-0-387-77335-3-1.
  • Hawrylak-Nowak, B. 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research 132:259–69. doi: 10.1007/s12011-009-8402-1.
  • Hossain, A., M. Skalicky, M. Brestic, S. Maitra, S. Sarkar, Z. Ahmad, H. Vemuri, S. Garai, M. Mondal, R. Bhatt, et al. 2021. Selenium biofortification: Roles, mechanisms, responses and prospects. Molecules 26:881. doi: 10.3390/molecules26040881.
  • Hossain, M. A., S. Bhattacharjee, S. M. Armin, P. Qian, W. Xin, H. Y. Li, D. J. Burritt, M. Fujita, and L. S. Tran. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science 6:420. doi: 10.3389/fpls.2015.00420.
  • Hossain, M. A., M. Z. Hossain, and M. Fujita. 2009. Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Australian Journal of Crop Science 3:53.
  • Jiang, C., C. Zu, D. Lu, Q. Zheng, J. Shen, H. Wang, and D. Li. 2017. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under Salinity Stress. Scientific Reports 7:1–4. doi: 10.1038/srep42039.
  • Khan, M. A., I. A. Ungar, and A. M. Showalter. 2005. Salt stimulation and tolerance in an intertidal stem-succulent halophyte. Journal of Plant Nutrition 28:1365–74. doi: 10.1081/PLN-200067462.
  • Kuo, W. Y., C. H. Huang, C. Shih, and T. L. Jinn. 2013. Cellular extract preparation for superoxide dismutase (SOD) activity assay. Bio-Protocol 3: E 811. doi: 10.201769/Bioprotoc.811.
  • Li, Z. G. 2015. Quantification of hydrogen sulfide concentration using methylene blue and 5, 5′-dithiobis (2-nitrobenzoic acid) methods in plants. Methods in Enzymology 554:101–10. doi: 10.1016/bs.mie.2014.11.031.
  • Lichtenthaler, H. K., and A. R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11:591–2.
  • Liu, H., J. Wang, J. Liu, T. Liu, and S. Xue. 2021. Hydrogen sulfide (H2S) signaling in plant development and stress responses. aBIOTECH 2:32–63. doi: 10.1007/s42994-021-00035-4.
  • Lugan, R., M. F. Niogret, L. Leport, J. P. Guégan, F. R. Larher, A. Savouré, J. Kopka, and A. Bouchereau. 2010. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal : For Cell and Molecular Biology 64 (2):215–29. doi: 10.1111/j.1365-313X.2010.04323.x.
  • Lv, S., P. Jiang, X. Chen, P. Fan, X. Wang, and Y. Li. 2012. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiology and Biochemistry 51:47–52. doi: 10.1016/j.plaphy.2011.10.015.
  • Malagoli, M., M. Schiavon, S. dall’Acqua, and E. A. Pilon-Smits. 2015. Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science 6:280. doi: 10.3389/fpls.2015.00280.
  • Matinzadeh, Z., J. López‐Angulo, A. Escudero, S. Palacio, M. Abedi, and H. Akhani. 2022. Functional structure of plant communities along salinity gradients in Iranian salt marshes. Plant-Environment Interactions 3:16–27. doi: 10.1002/pei3.10070.
  • Min, J. G., D. S. Lee, T. J. Kim, J. H. Park, T. Y. Cho, D. I. Park. 2002. Chemical composition of Salicornia Herbacea L. Journal of Food Science and Nutrition 7:105–7. doi: 10.3746/jfn.2002.7.1.105.
  • Mohammadzadeh, P., and R. Hajiboland. 2022. Phytoremediation of nitrate contamination using two halophytic species, Portulaca oleracea and Salicornia europaea. Environmental Science and Pollution Research 14:1–8. doi: 10.1007/s11356-022-19139-5.
  • Molnár, Á., Z. Kolbert, K. Kéri, G. Feigl, A. Ördög, R. Szőllősi, and L. Erdei. 2018. Selenite-induced nitro-oxidative stress processes in Arabidopsis thaliana and Brassica juncea. Ecotoxicology and Environmental Safety 148:664–74. doi: 10.1016/j.ecoenv.2017.11.035.
  • Monsen, E. R. 2000. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. Journal of the Academy of Nutrition and Dietetics 100:637. doi: 10.17226/9810.
  • Moura, J. C., C. A. Bonine, J. De Oliveira Fernandes Viana, M. C. Dornelas, and P. Mazzafera. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology 52 (4):360–76. doi: 10.1111/j.1744-7909.2010.00892.x.
  • Neill, S. J., R. Desikan, A. Clarke, R. D. Hurst, and J. T. Hancock. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany 53:1237–47. doi: 10.1093/jexbot/53.372.1237.
  • Owusu-Sekyere, A., J. Kontturi, R. Hajiboland, S. Rahmat, N. Aliasgharzad, H. Hartikainen, and M. M. Seppänen. 2013. Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant and Soil 373:541–52. doi: 10.1007/s11104-013-1815-9.
  • Parida, A. K., A. B. Das, and P. Mohanty. 2004. Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation 42:213–26. doi: 10.1023/B:GROW.0000026508.63288.39.
  • Patel, M. K., M. Kumar, W. Li, Y. Luo, D. J. Burritt, N. Alkan, and L. S. Tran. 2020. Enhancing salt tolerance of plants: From metabolic reprogramming to exogenous chemical treatments and molecular approaches. Cells 9:2492. doi: 10.3390/cells9112492.
  • Rasool, A., W. H. Shah, N. U. Mushtaq, S. Saleem, K. R. Hakeem, and R. Ul Rehman. 2022. Amelioration of salinity induced damage in plants by selenium application: A review. South African Journal of Botany 147:98–105. doi: 10.1016/j.sajb.2021.12.029.
  • Rockel, P., F. Strube, A. Rockel, J. Wildt, and W. M. Kaiser. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany 53:103–10. doi: 10.1093/jexbot/53.366.103.
  • Rozema, J., and T. Flowers. 2008. Crops for a salinized world. Science (New York, N.Y.) 322 (5907):1478–80. doi: 10.1126/science.1168572.
  • Santos, E. S., M. Salazar, S. Mendes, M. Lopes, J. Pacheco, and D. Marques. 2017. Rehabilitation of abandoned areas from a Mediterranean nature reserve by Salicornia crop: Influence of the salinity and shading. Arid Land Research and Management 31:29–45. doi: 10.1080/15324982.2016.1230796.
  • Schiavon, M., S. dall’Acqua, A. Mietto, E. A. Pilon-Smits, P. Sambo, A. Masi, and M. Malagoli. 2013. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). Journal of Agricultural and Food Chemistry 61:10542–54. doi: 10.1021/jf4031822.
  • Tonutare, T., U. Moor, and L. Szajdak. 2014. Strawberry anthocyanin determination by pH differential spectroscopic method-how to get true results? Acta Scientiarum Polonorum-Hortorum Cultus 13:35–47.
  • Van Zelm, E., Y. Zhang, and C. Testerink. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403–33. doi: 10.1146/annurev-arplant-050718-100005.
  • Wakeel, A., M. Farooq, M. Qadir, and S. Schubert. 2011. Potassium substitution by sodium in plants. Critical Reviews in Plant Sciences 30:401–13. doi: 10.1080/07352689.2011.587728.
  • Wang, X., P. Fan, H. Song, X. Chen, X. Li, and Y. Li. 2009. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research 8:3331–45. doi: 10.1021/pr801083a.
  • Yadav, S. K., S. L. Singla-Pareek, M. K. Reddy, and S. K. Sopory. 2005. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Letters 579 (27):6265–71. doi: 10.1016/j.febslet.2005.10.006.
  • Yamada, M., C. Kuroda, and H. Fujiyama. 2016. Growth promotion by sodium in amaranthaceous plants. Journal of Plant Nutrition 39:1186–93. doi: 10.1080/01904167.2015.1069341.
  • Yang, H., X. Yang, Z. Ning, S. Y. Kwon, M. L. Li, F. M. Tack, E. E. Kwon, J. Rinklebe, and R. Yin. 2022. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. Journal of Hazardous Materials 422:126876. doi: 10.1016/j.jhazmat.2021.126876.
  • Yuan, F., Y. Xu, B. Leng, and B. Wang. 2019. Beneficial effects of salt on halophyte growth: Morphology, cells, and genes. Open Life Sciences 14:191–200. doi: 10.1515/biol-2019-0021.
  • Zhao, L., F. Zhang, J. Guo, Y. Yang, B. Li, and L. Zhang. 2004. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology 134:849–57. doi: 10.1104/pp.103.030023.
  • Zhishen, J., T. Mengcheng, and W. Jianming. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555–9. doi: 10.1016/S0308-8146(98)00102-2.
  • Zhou, X., J. Yang, H. J. Kronzucker, and W. Shi. 2020. Selenium biofortification and interaction with other elements in plants: A review. Frontiers in Plant Science 11:586421. doi: 10.3389/fpls.2020.586421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.