173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of micronutrients and sulfur enriched phyto-biochars on yield, tissue concentrations and uptake of these nutrients in fodder maize (Zea mays L.) and post-harvest soil properties

, , , , &
Pages 3142-3159 | Received 08 Feb 2022, Accepted 07 Mar 2023, Published online: 30 Mar 2023

References

  • Abewa, A., B. Yitaferu, YG. Selassie, and TT. Amare. 2013. The role of biochar on acid soil reclamation and yield of teff (Eragrostistef [Zucc] Trotter) in Northwestern Ethiopia. Journal of Agricultural Science 6 (1):1–12. doi: 10.5539/jas.v6n1p1.
  • Amdekar, S. J. 2014. Statistical methods for agricultural and biological sciences. New Delhi: Narosa Publishing House Pvt. Ltd.
  • Atkinson, C. J., J. D. Fitzgerald, and N. A. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil 337:1–18. doi: 10.1007/s11104-010-0464-5.
  • Lucchini, P., R. S. Quilliam, T. H. DeLuca, T. Vamerali, and D. L. Jones. 2014. Does biochar application alter heavymetal dynamics in agricultural soil? Agriculture Ecosystem and Environment 184:149–57. doi: 10.1016/j.agee.2013.11.018.
  • Chan, K. Y., L. van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2007. Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research 45:629–34. doi: 10.1071/SR07109.
  • Chintala, R., J. Mollinedo, T. E. Schumacher, D. D. Malo, and J. L. Julson. 2014. Effectof biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science 60:393–404. doi: 10.1080/03650340.2013.789870.
  • Chew, J., L. Zhu, S. Nielsen, D. R. G. Mitchell, J. Horvat, M. Liu, L. Zwieten, S. Donne, P. Munroe, S. Taherymoosavi, et al. 2020. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. The Science of the Total Environment 713:136431. doi: 10.1016/j.scitotenv.2019.136431.
  • Das, O., and A. K. Sarmah. 2015. The love-hate relationship of pyrolysis biochar and water: A perspective. Science of the Total Environment 512:682–5. doi: 10.1016/j.scitotenv.2015.01.061.
  • Duboc, O., K. Steiner, F. Radosits, W. W. Wenzel, W. Goessler, A. Tiefenbacher, P. Strauss, H. Eigner, D. Horn, and J. Santner. 2021. Field evaluation of a boron recycling fertiliser. Plant, Soil and Environment 67:110–9. doi: 10.17221/567/2020-PSE.
  • Fernandes, M. B., and P. Brooks. 2003. Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53 (5):447–58. doi: 10.1016/S0045-6535(03)00452-1.
  • Govind Ballabh Pant University of Agriculture and Technology. 2004. Standard computer programs. Pantnagar: Department of Mathematics, Statistics and Computer Science, College of Basic Sciences and Humanities.
  • Hammerschmiedt, T., J. Holatko, M. Sudoma, A. Kintl, J. Vopravil, P. Ryant, P. Skarpa, M. Radziemska, O. Latal, and M. Brtnicky. 2021. Biochar and sulphur enriched digestate: Utilization of agriculture associated waste products for improved soil carbon and nitrogen content, microbial activity, and plant growth. Agronomy 11:2041. doi: 10.3390/agronomy11102041.
  • Huang, M., F. Long, J. Li-Geng, Y. Shu-Ying, Z. Ying-bin, and N. Uphoff. 2019. Continuous applications of biochar to rice: Effects on grain yield and yield attributes. Journal of Integrative Agriculture 18 (3):563–70. doi: 10.1016/S2095-3119(18)61993-8.
  • Ippolito, J. A., L. Cui, C. Kammann, N. Wrage-Mönnig, J. M. Estavillo, T. Fuertes-Mendizabal, M. L. Cayuela, G. Sigua, J. Novak, K. Spokas, and N. Borchard. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2: 421-438. doi: 10.1007/s42773-020-00067-x.
  • Jackson, M. L. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.
  • Joseph, S., A. L. Cowie, L. V. Zwieten, N. Bolan, A. Budai, W. Buss, M. L. Cayuela, E. R. Graber, J. A. Ippolito, Y. Kuzyakov, et al. 2021. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13 (11):1731–1764. doi: 10.1111/gcbb.12885.
  • Joseph, S., O. Husson, E. R. Graber, L. Van Zwieten, S. Taherymoosavi, T. Thomas, S. Nielsen, J. Ye, G. Pan, and C. Chia. 2015. The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy 5 (3):322–40. doi: 10.3390/agronomy5030322.
  • Kamau, S., N. Karanja, F. O. Ayuke, and J. Lehmann. 2019. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biology and Fertility of Soils 55 (7):661–73. doi: 10.1007/s00374-019-01381-8.
  • Katyal, J. C., and R. K. Rattan. 2003. Secondary and micronutrients: Research gaps and future needs. Fertilizer News 48 (4):9–14.
  • Kimetu, J. M., J. Lehmann, S. O. Ngoze, D. N. Mugendi, J. M. Kinyangi, S. Riha, L. Verchot, J. W. Recha, and A. N. Pell. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–39. doi: 10.1007/s10021-008-9154-z.
  • Kizito, S., H. Luo, J. Lu, H. Bah, R. Dong, and S. Wu. 2019. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 11:3211. doi: 10.3390/su11113211.
  • Khan, M. A., S. Khan, X. Ding, A. Khan, and M. Alam. 2018. The effects of biochar and rice husk on adsorption and desorption of cadmium on to soils with different water conditions (upland and saturated). Chemosphere 193:1120–1126. doi: 10.1016/j.chemosphere.2017.11.110.
  • Kloss, S., F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M. H. Gerzabek, and G. Soja. 2012. Characterization of slowpyrolysisbiochars: Effects of feedstocks and pyrolysis temperature on biocharproperties. Journal of Environmental Quality 41 (4):990–1000. doi: 10.2134/jeq2011.0070.
  • Kolton, M., Y. M. Harel, Z. Pasternak, E. R. Graber, Y. Elad, and E. Cytryn. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology 77 (14):4924–30. doi: 10.1128/AEM.00148-11.
  • Lehmann, J., C. Czimnik, D. Laird, and S. Sohi. 2009. Stability of biochar in the soil. In Biochar for environmental management: Science and technology, eds. J. Lehmann and J. Stephen, 169–82. London: Earthscan.
  • Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Skjemstad, J. Thies, F. J. Luiza, J. Petersen, et al. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70:1719–30. doi: 10.2136/sssaj2005.0383.
  • Luo, W., L. Qian, W. Liu, X. Zhang, Q. Wang, H. Jiang, B. Cheng, H. Ma, and Z. Wu. 2021. A potential Mg-enriched biochar fertilizer: Excellent slow-release performance and release mechanism of nutrients. The Science of the Total Environment 768:144454. doi: 10.1016/j.scitotenv.2020.144454.
  • Major, J., M. Rondon, D. Molina, S. J. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savannahoxisol. Plant and Soil 333:117–28. doi: 10.1007/s11104-010-0327-0.
  • Manolikaki, I., and E. Diamadopoulos. 2019. Positive effects of biochar and biochar-compost on maize growth and nutrient availability in two agricultural soils. Communications in Soil Science and Plant Analysis 50:1–15. doi: 10.1080/00103624.2019.1566468.
  • Ministry of Agriculture & Farmers Welfare. 2019. Economic Survey 2018-19, Volume 2. Agriculture and Food Management, 172–96. New Delhi, India: Government of India.
  • Mosa, A., A. El-Ghamry, and M. Tolba. 2018. Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere 198:351–63. doi: 10.1016/j.chemosphere.2018.01.113.
  • Namgay, T., B. Singh, and B. P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research 48 (7):638–47. doi: 10.1071/SR10049.
  • Ndoung, O. C. N., C. C. De. Figueiredo, and M. G. Ramos. 2021. A scoping review on biochar-based fertilizers: Enricchment techniques and agro-environmental application. Heliyon 7 (12):e08473. doi: 10.1016/j.heliyon.2021.e08473.
  • Oguntunde, P. G., M. Fosu, A. E. Ajayi, and N. van de Giesen. 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biology and Fertility of Soils 39:295–9. doi: 10.1007/s00374-003-0707-1.
  • Purakayastha, T. J. 2010. Effect of biochar on yield of different crops. IARI.Annual Report2010-11, Indian Agricultural Research Institute, New Delhi-110012, India, 55.
  • Shukla, A. K., S. K. Behera, T. Satyanarayana, and K. Majumdar. 2019. Importance of Micronutrients in Indian Agriculture. Better crops-South Asia, 1–10. Gurgaon, India: International Plant Nutrition Institute (IPNI) South Asia Program.
  • Sun, T. R., B. D. A. Levin, J. J. L. Guzman, A. Enders, D. A. Muller, L. T. Angenent, and J. Lehmann. 2017. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications 8:14873. doi: 10.1038/ncomms14873.
  • Tag, A. T., G. Duman, S. Ucar, and J. Yanik. 2016. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis 120:200–6. doi: 10.1016/j.jaap.2016.05.006.
  • Tandon, H. L. S. 2005. Methods of analysis of soils, plants, waters, fertilizers and organic manures, 28–32. New Delhi, India: Fertilizer Development and Consultation Organization.
  • van Zwieten, L., S. Kimber, A. Downie, S. Morris, S. Petty, J. Rust, and K. Y. Chan. 2010. A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Australian Journal of Soil Sciences 48:569–76. doi: 10.1071/SR10003.
  • Yu, H., Z. Zhang, Z. Li, and D. Chen. 2014. Characteristic of tar formation during cellulose hemicelluloses and lignin gasification. Fuel 118:250–6. doi: 10.1016/j.fuel.2013.10.080.
  • Yuan, J. H., R. K. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102 (3):3488–97. doi: 10.1016/j.biortech.2010.11.018.
  • Zhang, H., R. P. Voroney, G. W. Price, and A. J. White. 2017. Sulfur-enriched biochar as a potential soil amendment and fertiliser. Soil Research 55:93–9. doi: 10.1071/SR15256.
  • Zhang, L., Y. Jing, Y. Xiang, R. Zhang, and H. Lu. 2018. Responses of soil microbial community structure changes and activities to biochar addition: A meta analysis. The Science of the Total Environment 643:926–35. doi: 10.1016/j.scitotenv.2018.06.231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.