550
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Unraveling arbuscular mycorrhizal fungi interaction in rice for plant growth development and enhancing phosphorus use efficiency through recent development of regulatory genes

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3184-3220 | Received 02 Dec 2021, Accepted 07 Mar 2023, Published online: 22 Mar 2023

References

  • Adeyemi, N. O., M. O. Atayese, O. S. Sakariyawo, J. O. Azeez, A. Olubode, R. Mudathir, R. Adebayo, and S. Adeoye. 2021b. A growth and phosphorus uptake of soybean (Glycine Max L.) in response to arbuscular mycorrhizal fungus rhizophagus intraradices inoculation in heavy metal-contaminated soils. Soil and Sediment Contamination. An International Journal 30 (6):698–713.
  • Adeyemi, N. O., M. O. Atayese, O. S. Sakariyawo, J. O. Azeez, A. A. Olubode, M. Ridwan, A. Adebiyi, O. Oni, and I. Ibrahim. 2021a. Influence of different arbuscular mycorrhizal fungi isolates in enhancing growth, phosphorus uptake and grain yield of soybean in a phosphorus deficient soil under field conditions. Communications in Soil Science and Plant Analysis 52 (10):1171–83.
  • Adeyemi, N. O., M. O. Atayese, O. S. Sakariyawo, J. O. Azeez, and M. Ridwan. 2021c. Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil. Journal of Plant Nutrition 44 (11):1633–48.
  • Adeyemi, N. O., M. O. Atayese, O. S. Sakariyawo, J. O. Azeez, P. A. S. Soremi, A. Olubode, R. Mudathir, R. Adebayo, and S. Adeoye. 2021d. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine Max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere 18: 100325.
  • Ai, P., S. Sun, J. Zhao, X. Fan, W. Xin, Q. Guo, L. Yu, Q. Shen, P. Wu, A. J. Miller, et al. 2009. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. The Plant Journal 57 (5):798–809.
  • Al‐Ghazi, Y., B. Muller, S. Pinloche, T. J. Tranbarger, P. Nacry, M. Rossignol, F. Tardieu, and P. Doumas. 2003. Temporal responses of Arabidopsis root architecture to phosphate starvation: Evidence for the involvement of auxin signalling. Plant, Cell & Environment 26 (7):1053–66.
  • Ali, N., S. Paul, D. Gayen, S. N. Sarkar, K. Datta, and S. K. Datta. 2013. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8 (7):e68161.
  • Allen, M. F. 2007. Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone Journal 6 (2):291–7.
  • Alpuerto, V. L. E. B., G. W. Norton, J. Alwang, and A. M. Ismail. 2009. Economic impact analysis of marker‐assisted breeding for tolerance to salinity and phosphorous deficiency in rice. Applied Economic Perspectives and Policy 31 (4):779–92.
  • Andrino, A., G. Guggenberger, L. Sauheitl, S. Burkart, and J. Boy. 2021. Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biology and Fertility of Soils 57 (1):47–64.
  • Bagyaraj, D. J., M. P. Sharma, and D. Maiti. 2015. Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science 108 (7):1288–93.
  • Bao, X., Y. Wang, and P. A. Olsson. 2019. Arbuscular mycorrhiza under water—Carbon–phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes. Soil Biology and Biochemistry 129:169–77.
  • Barea, J. M., and C. Azcón-Aguilar. 1982. Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied and Environmental Microbiology 43 (4):810–3.
  • Bari, R., B. Datt Pant, M. Stitt, and W. R. Scheible. 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology 141 (3):988–99.
  • Basiru, S., H. P. Mwanza, and M. Hijri. 2021. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 9 (1):81.
  • Basu, A., P. Prasad, S. N. Das, et al. 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 13:1140.
  • Begum, N., C. Qin, M. A. Ahanger, S. Raza, M. I. Khan, M. Ashraf, N. Ahmed, and L. Zhang. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10:1068.
  • Bernaola, L., M. Cosme, R. W. Schneider, and M. Stout. 2018. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms. Frontiers in Plant Science 9:747.
  • Bernaola, L., G. Cange, W. Mo, J. Gore, J. Hardke, and M. Stout. 2018. Natural colonization of rice by arbuscular mycorrhizal fungi in different production areas. Rice Science 25:169–74.
  • Berners-Lee, M., C. Kennelly, R. Watson, C. N. Hewitt, A. R. Kapuscinski, K. A. Locke, and C. J. Peters. 2018. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene 6 (1):52.
  • Berruti, A., E. Lumini, R. Balestrini, and V. Bianciotto. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology 6:1559.
  • Bieleski, R. L., and I. B. Ferguson. 1983. Physiology and metabolism of phosphate and its compounds. In Inorganic plant nutrition, 422–49. Berlin, Heidelberg: Springer.
  • Bolan, N. S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134 (2):189–207.
  • Bonfante, P., and A. Genre. 2008. Plants and arbuscular mycorrhizal fungi: An evolutionary-developmental perspective. Trends in Plant Science 13:492–8.
  • Bot, A., F. Nachtergaele, and A. Young. 2000. Land resource potential and constraints at regional and country levels (No. 90). Rome, Italy: Food & Agriculture Org.
  • Campo, S., and B. San Segundo. 2020. Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. Scientific Reports 10 (1):15896.
  • Campo, S., H. Martín-Cardoso, M. Olivé, E. Pla, M. Catala-Forner, M. Martínez-Eixarch, and B. San Segundo. 2020. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice 13 (1):1–14.
  • Campos, P., F. Borie, P. Cornejo, J. A. López-Ráez, Á. López-García, and A. Seguel. 2018. Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science 9:752.
  • Campos‐Soriano, L., J. García‐Martínez, and B. S. Segundo. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence‐related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology 13 (6):579–92.
  • Campos-Soriano, L., J. Gómez-Ariza, P. Bonfante, and B. San Segundo. 2011. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biology 11 (1):1–14.
  • Cao, Y., D. Sun, H. Ai, H. Mei, X. Liu, S. Sun, G. Xu, Y. Liu, Y. Chen, and L. Q. Ma. 2017. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environmental Science & Technology 51 (21):12131–8.
  • Chabaud, M., M. Harrison, F. de Carvalho-Niebel, G. Bécard, and D. G. Barker. 2006. Inoculation and growth with mycorrhizal fungi. The Medicago truncatula handbook, 1–15. Ardmore, USA: Samuel Roberts Noble Foundation.
  • Chandini, K. R., R. Kumar, and O. Prakash. 2019. The impact of chemical fertilizers on our environment and ecosystem. In Research trends in environmental sciences, 69–86, New Delhi, India: AkiNik Publications.
  • Chareesri, A., G. B. De Deyn, L. Sergeeva, A. Polthanee, and T. W. Kuyper. 2020. Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought. Mycorrhiza 30 (2):315–28.
  • Chen, M., M. Arato, L. Borghi, E. Nouri, and D. Reinhardt. 2018. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Frontiers in Plant Science 9:1270.
  • Chiu, C. H., J. Choi, and U. Paszkowski. 2018. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytologist 217 (2):552–7.
  • Choi, J., T. Lee, J. Cho, E. K. Servante, B. Pucker, and W. Summers. 2020. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications 11:2114.
  • Chojnacka, K., K. Moustakas, and A. Witek-Krowiak. 2020. Bio-based fertilizers: A practical approach towards circular economy. Bioresource Technology 295:122223. doi: 10.1016/j.biortech.2019.122223.
  • Ciereszko, I., H. Johansson, and L. A. Kleczkowski. 2005. Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. Journal of Plant Physiology 162 (3):343–53.
  • Colard, A., C. Angelard, and I. R. Sanders. 2011. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Applied and Environmental Microbiology 77 (18):6510–5.
  • Crossay, T., C. Antheaume, D. Redecker, L. Bon, N. Chedri, C. Richert, L. Guentas, Y. Cavaloc, and H. Amir. 2017. New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Scientific Reports 7 (1):1–16.
  • Dai, X., Y. Wang, A. Yang, and W. H. Zhang. 2012. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology 159 (1):169–83.
  • Davidson, H., R. Shrestha, T. Cornulier, A. Douglas, T. Travis, D. Johnson, and A. H. Price. 2019. Spatial effects and GWA mapping of root colonization assessed in the interaction between the rice diversity panel 1 and an arbuscular mycorrhizal fungus. Frontiers in Plant Science 10:633.
  • Debasis, M., A. Snežana, P. Panneerselvam, S. A. Manisha, V. Tanja, A. N. Ganeshamurthy, V. Devvret, R. T. Poonam, and J. Divya. 2019. Plant growth promoting microorganisms (PGPMs) helping in sustainable agriculture: Current perspective. International Journal of Agricultural Sciences and Veterinary Medicine 7 (2):50–74.
  • Delian, E., A. Chira, L. Chira, and E. Savulescu. 2011. Arbuscular mycorrhizae: An overview. South-Western Journal of Horticulture, Biology and Environment 2:167–92.
  • Desnos, T. 2008. Root branching responses to phosphate and nitrate. Current Opinion in Plant Biology 11 (1):82–7.
  • Devaiah, B. N., A. S. Karthikeyan, and K. G. Raghothama. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143 (4):1789–801.
  • Dhillion, S. S., and L. A. Ampornpan. 1992. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice (Oryza sativa L.) plants. Biology and Fertility of Soils 13 (2):85–91.
  • Diagne, N., M. Ngom, P. I. Djighaly, D. Fall, V. Hocher, and S. Svistoonoff. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12 (10):370.
  • Diedhiou, A. G., F. K. Mbaye, D. Mbodj, M. N. Faye, S. Pignoly, I. Ndoye, K. Djaman, G. S. Kane, A. Laplaze, L. Manneh, et al. 2016. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice. PLoS One 11:1–17.
  • Diedhiou, A. G., F. K. Mbaye, D. Mbodj, M. N. Faye, S. Pignoly, I. Ndoye, K. Djaman, S. Gaye, A. Kane, L. Laplaze, et al. 2016. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice. PLoS One 11 (12):e0167014.
  • Dionisio, G., C. K. Madsen, P. B. Holm, K. G. Welinder, M. Jørgensen, E. Stoger, E. Arcalis, and H. Brinch-Pedersen. 2011. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiology 156 (3):1087–100.
  • Dissanayaka, D., S. Nishida, K. Tawaraya, and J. Wasaki. 2018. Organ-specific allocation pattern of acquired phosphorus and dry matter in two rice genotypes with contrasting tolerance to phosphorus deficiency. Soil Science and Plant Nutrition 64 (3):282–90.
  • El Omari, B., and N. El Ghachtouli. 2021. Arbuscular mycorrhizal fungi-weeds interaction in cropping and unmanaged ecosystems: A review. Symbiosis 83 (3):279–92.
  • Elita, N., E. Susila, and Y. Yefriwati. 2020. Application mycorrhizal glomus sp 3 with P fertilizer to increase rice production of SRI method and intensified soil nutrient content. In Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24–5. January 2018, Padang, Indonesia. Padang, Indonesia: EAI.
  • El-Sherbeny, T. M. S., A. M. Mousa, and E. S. R. El-Sayed. 2022. Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi Journal of Biological Sciences 29 (1):331–8.
  • Etesami, H., and B. R. Jeong. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant: A review. Frontiers in Plant Science 12:1355.
  • Etesami, H., B. R. Jeong, and B. R. Glick. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science 12:699618.
  • Fageria, N. K. 2003. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in lowland rice. Communications in Soil Science and Plant Analysis 34 (1–2):259–70.
  • Fakhech, A., M. Jemo, N. Manaut, L. Ouahmane, and M. Hafidi. 2021. Impact of mycorrhization on phosphorus utilization efficiency of acacia gummifera and retama monosperma under salt stress. Forests 12 (5):611.
  • Fang, M. A., S. U. Meng, and W. Li. 2014. Effects of arbuscular mycorrhizal fungi (AMF) on the growth of wheat. Acta Ecologica Sinica 34 (21):6107–14.
  • Fao, F. 2017. The future of food and agriculture–Trends and challenges. Annual Report 296.
  • Fasusi, O. A., C. Cruz, and O. O. Babalola. 2021. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11 (2):163.
  • Franco-Zorrilla, J. M., A. C. Martín, A. Leyva, and J. Paz-Ares. 2005. Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiology 138 (2):847–57.
  • Fu, X., and N. P. Harberd. 2003. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421 (6924):740–3.
  • Furihata, T., M. Suzuki, and H. Sakurai. 1992. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant and Cell Physiology 33 (8):1151–7.
  • Gamuyao, R., J. H. Chin, J. Pariasca-Tanaka, P. Pesaresi, S. Catausan, C. Dalid, I. Slamet-Loedin, E. M. Tecson-Mendoza, M. Wissuwa, and S. Heuer. 2012. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488 (7412):535–9. doi: 10.1038/nature11346.
  • Gao, W., L. Lu, W. Qiu, C. Wang, and H. Shou. 2017. OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice. Plant and Cell Physiology 58 (5):885–92.
  • George, T. S., and A. E. Richardson. 2008. Potential and limitations to improving crops for enhanced phosphorus utilization. In The ecophysiology of plant-phosphorus interactions, 247–70. Dordrecht: Springer.
  • Giri, J., R. Bhosale, G. Huang, B. K. Pandey, H. Parker, S. Zappala, J. Yang, A. Dievart, C. Bureau, K. Ljung, et al. 2018. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications 9 (1):1–7.
  • Glassop, D., R. M. Godwin, S. E. Smith, and F. W. Smith. 2007. Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi. Botany 85 (7):644–51.
  • Glassop, D., S. E. Smith, and F. W. Smith. 2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222 (4):688–98.
  • Gosling, P., A. Hodge, G. Goodlass, and G. D. Bending. 2006. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment 113 (1–4):17–35.
  • Gu, M., J. Zhang, H. Li, D. Meng, R. Li, X. Dai, S. Wang, W. Liu, H. Qu, and G. Xu. 2017. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. Journal of Experimental Botany 68 (13):3603–15.
  • Guo, F. Q., R. Wang, M. Chen, and N. M. Crawford. 2001. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1. 1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. The Plant Cell 13 (8):1761–77.
  • Gupta, M. 2017. Differential response of arbuscular mycorrhizal sporocarps in long-term trap culturing. Phytomorphology 67:1–11.
  • Gupta, M. M., D. Chourasiya, M. P. Sharma. 2019. Diversity of arbuscular mycorrhizal fungi in relation to sustainable plant production systems. In Microbial diversity in ecosystem sustainability and biotechnological applications, ed. T. Satyanarayana, 167–86. Singapore: Springer.
  • Gutjahr, C., D. Radovanovic, J. Geoffroy, Q. Zhang, H. Siegler, M. Chiapello, L. Casieri, K. An, G. An, E. Guiderdoni, et al. 2012. The half‐size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. The Plant Journal 69 (5):906–20.
  • Hajiboland, R., A. N. Ali, and R. Barzegar. 2007. Impacts of inoculation with two species of arbuscular mycorrhizae on rice (Oryza sativa L.) growth, phosphorus and potassium uptake and rhizosphere pH. Iranian Journal of Soil and Waters Sciences 21 (1):111–20.
  • Hajiboland, R., N. Aliasgharzad, and R. Barzeghar. 2009. Phosphorus mobilization and uptake in mycorrhizal rice (Oryza sativa L.) plants under flooded and non-flooded conditions. Acta Agriculturae Slovenica 93 (2):153.
  • Hammer, E. C., J. Pallon, H. Wallander, and P. A. Olsson. 2011. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology 76 (2):236–44.
  • Harrier, L. A. 2001. The arbuscular mycorrhizal symbiosis: A molecular review of the fungal dimension. Journal of Experimental Botany 52 (Spec Issue):469–78. doi: 10.1093/jexbot/52.suppl_1.469.
  • Hasan, M. M., Hasan, M. M. Da, S. Ja T, and Li, X. 2016. Regulation of phosphorus uptake and utilization: Transitioning from current knowledge to practical strategies. Cellular & Molecular Biology Letters 21:1–19.
  • He, J., C. Zhang, H. Dai, H. Liu, X. Zhang, J. Yang, X. Chen, Y. Zhu, D. Wang, X. Qi, et al. 2019. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Molecular Plant 12 (12):1561–76.
  • Hoffland, E., C. Wei, and M. Wissuwa. 2006. Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant and Soil 283:155–62.
  • Hoseinzade, H., M. R. Ardakani, A. Shahdi, H. A. Rahmani, G. Noormohammadi, and M. Miransari. 2016. Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. Journal of Integrative Agriculture 15 (6):1385–94.
  • Hou, X. L., P. Wu, F. C. Jiao, Q. J. Jia, H. M. Chen, J. Yu, X. W. Song, and K. K. Yi. 2005. Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant, Cell & Environment 28 (3):353–64.
  • Huang, C. Y., N. Shirley, Y. Genc, B. Shi, and P. Langridge. 2011. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiology 156 (3):1217–29.
  • Huang, G., W. Liang, C. J. Sturrock, B. K. Pandey, J. Giri, S. Mairhofer, D. Wang, L. Muller, H. Tan, L. M. York, et al. 2018. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications 9 (1):1–9.
  • Huang, R., Z. Li, C. Mao, H. Zhang, Z. Sun, H. Li, C. Huang, Y. Feng, X. Shen, M. Bucher, et al. 2020. Natural variation at Os CERK 1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytologist 225 (4):1762–76.
  • Ingraffia, R., G. Amato, A. S. Frenda, and D. Giambalvo. 2019. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS One 14 (3):e0213672.
  • Ismail, A. M., S. Heuer, M. J. Thomson, and M. Wissuwa. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65 (4):547–70.
  • Jain, A., M. D. Poling, A. P. Smith, V. K. Nagarajan, B. Lahner, R. B. Meagher, and K. G. Raghothama. 2009. Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiology 150 (2):1033–49.
  • Janeeshma, E., and J. T. Puthur. 2022. Physiological and metabolic dynamism in mycorrhizal and non-mycorrhizal Oryza sativa (var. Varsha) subjected to Zn and Cd toxicity: A comparative study. Environmental Science and Pollution Research 30 (2):3668–3687.
  • Javot, H., N. Pumplin, and M. J. Harrison. 2007. Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant, Cell & Environment 30 (3):310–22.
  • Jeong, K., A. Baten, D. L. Waters, O. Pantoja, C. C. Julia, M. Wissuwa, S. Heuer, T. Kretzschmar, and T. J. Rose. 2017. Phosphorus remobilization from rice flag leaves during grain filling: An RNA‐seq study. Plant Biotechnology Journal 15 (1):15–26.
  • Jeong, K., N. Mattes, S. Catausan, J. H. Chin, U. Paszkowski, and S. Heuer. 2015. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice. Journal of Integrative Plant Biology 57 (11):969–79.
  • Jia, H., H. Ren, M. Gu, J. Zhao, S. Sun, X. Zhang, J. Chen, P. Wu, and G. Xu. 2011. The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice. Plant Physiology 156 (3):1164–75.
  • Jiang, C., X. Gao, L. Liao, N. P. Harberd, and X. Fu. 2007. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology 145 (4):1460–70.
  • Johnson, D., J. R. Leake, and D. J. Read. 2002. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: Short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry 34 (10):1521–4.
  • Johri, A. K., R. Oelmüller, M. Dua, V. Yadav, M. Kumar, N. Tuteja, A. Varma, P. Bonfante, B. L. Persson, and R. M. Stroud. 2015. Fungal association and utilization of phosphate by plants: Success, limitations, and future prospects. Frontiers in Microbiology 6:984.
  • Jung, S. C., A. Martinez-Medina, J. A. Lopez-Raez, and M. J. Pozo. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38 (6):651–64.
  • Karthikeyan, A. S., D. K. Varadarajan, U. T. Mukatira, M. P. D'Urzo, B. Damsz, and K. G. Raghothama. 2002. Regulated expression of Arabidopsis phosphate transporters. Plant Physiology 130 (1):221–33.
  • Kaur, S., and V. Suseela. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10 (8):335.
  • Kiers, E. T., M. Duhamel, Y. Beesetty, J. A. Mensah, O. Franken, E. Verbruggen, C. R. Fellbaum, G. A. Kowalchuk, M. M. Hart, A. Bago, et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science (New York, NY) 333 (6044):880–2. doi: 10.1126/science.1208473.
  • Kim, S. J., J. K. Eo, E. H. Lee, H. Park, and A. H. Eom. 2017. Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology 45 (1):20–4.
  • Klinnawee, L., N. Noirungsee, K. Nopphakat, P. Runsaeng, and T. Chantarachot. 2021. Flooding overshadows phosphorus availability in controlling the intensity of arbuscular mycorrhizal colonization in Sangyod Muang Phatthalung lowland indica rice. ScienceAsia 47:202–10.
  • Kobae, Y. 2019. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Frontiers in Environmental Science 6: 159.
  • Kobae, Y., and S. Hata. 2010. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant & Cell Physiology 51 (3):341–53.
  • Kobae, Y., Y. Ohmori, C. Saito, K. Yano, R. Ohtomo, and T. Fujiwara. 2016. Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiology 171 (1):566–79. doi: 10.1104/pp.16.00127.
  • Kochian, L. V. 2012. Rooting for more phosphorus. Nature 488 (7412):466–7. doi: 10.1038/488466a.
  • Kour, D., T. Kaur, N. Yadav, A. A. Rastegari, B. Singh, V. Kumar, and A. N. Yadav. 2020. Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In New and future developments in microbial biotechnology and bioengineering, 157–76. Elsevier.
  • Krishnamurthy, P., B. Sreedevi, T. Ram, G. Padmavathi, R. M. Kumar, P. R. Rao, N. S. Rani, P. C. Latha, and S. P. Singh. 2010. Evaluation of rice genotypes for phosphorus use efficiency under soil mineral stress conditions. Oryza 47 (1):29–33.
  • Krishnan, P., B. Ramakrishnan, K. R. Reddy, and V. R. Reddy. 2011. High-temperature effects on rice growth, yield, and grain quality. Advances in Agronomy 111:87–206.
  • Kucey, R. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science 63 (4):671–8.
  • Laheurte, F., C. Leyval, and J. Berthelin. 1990. Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9 (1):111–6.
  • Lee, E. H., J. K. Eo, K. H. Ka, and A. H. Eom. 2013. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41 (3):121–5.
  • Lejay, L., J. Wirth, M. Pervent, J. M. F. Cross, P. Tillard, and A. Gojon. 2008. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiology 146 (4):2036–53.
  • Lenoir, I., J. Fontaine, and A. L. H. Sahraoui. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123:4–15.
  • Li, H., S. E. Smith, R. E. Holloway, Y. Zhu, and F. A. Smith. 2006. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist 172:536–43.
  • Li, H., X. W. Chen, and M. H. Wong. 2016. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 145:224–30.
  • Li, M., N. R. Jordan, R. T. Koide, A. C. Yannarell, and A. S. Davis. 2016. Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: Implications for integrated weed management. Weed Science 64 (4):642–52.
  • Li, X., and P. Christie. 2001. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42 (2):201–7.
  • Li, Y., J. Zhang, X. Zhang, H. Fan, M. Gu, H. Qu, and G. Xu. 2015. Phosphate transporter OsPht1; 8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Science 230:23–32.
  • Li, Y., Y. Gan, N. Lupwayi, and C. Hamel. 2019. Influence of introduced arbuscular mycorrhizal fungi and phosphorus sources on plant traits, soil properties, and rhizosphere microbial communities in organic legume-flax rotation. Plant and Soil 443 (1):87–106.
  • Lin, C., Y. Wang, M. Liu, Q. Li, W. Xiao, and X. Song. 2020. Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Scientific Reports 10 (1):1–8.
  • Linares, O. F. 2002. African rice (Oryza glaberrima): history and future potential. Proceedings of the National Academy of Sciences 99 (25):16360–5.
  • Liu, C.-Y., F. Zhang, D.-J. Zhang, A. Srivastava, Q.-S. Wu, and Y.-N. Zou. 2018. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports 8:1–9.
  • Liu, J., X. Liu, Q. Zhang, S. Li, Y. Sun, W. Lu, and C. Ma. 2020. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate‑solubilizing bacteria under different phosphorus application levels. AMB Express 10:200.
  • Liu, J., L. Yang, M. Luan, Y. Wang, C. Zhang, B. Zhang, J. Shi, F. G. Zhao, W. Lan, and S. Luan. 2015. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences 112 (47):E6571–E6578.
  • Liu, R. C., Z. Y. Xiao, A. Hashem, E. F. Abd_Allah, and Q. S. Wu. 2021. Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera. Agriculture 11 (6):470.
  • Liu, T. Y., T. K. Huang, S. Y. Yang, Y. T. Hong, S. M. Huang, F. N. Wang, S. F. Chiang, S. Y. Tsai, W. C. Lu, and T. J. Chiou. 2016. Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications 7 (1):1–11.
  • López-Ráez, J. A., A. Verhage, I. Fernández, J. M. García, C. Azcón-Aguilar, V. Flors, and M. J. Pozo. 2010. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany 61 (10):2589–601.
  • Lu, L., W. Qiu, W. Gao, S. D. Tyerman, H. Shou, and C. Wang. 2016. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant, Cell & Environment 39 (10):2247–59.
  • Luginbuehl, L. H., and G. E. Oldroyd. 2017. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Current Biology 27 (17):R952–R963.
  • Luginbuehl, L. H., G. N. Menard, S. Kurup, H. Van Erp, G. V. Radhakrishnan, A. Breakspear, G. E. Oldroyd, and P. J. Eastmond. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science (New York, NY) 356 (6343):1175–8. doi: 10.1126/science.aan0081.
  • Lynch, J. P. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology 156 (3):1041–9.
  • Lynch, J. P. 2015. Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture. Plant, Cell & Environment 38 (9):1775–84.
  • MacDonald, G. K., E. M. Bennett, P. A. Potter, and N. Ramankutty. 2011. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences 108 (7):3086–91.
  • Maiti, D., N. N. Toppo, and M. Variar. 2011. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza 21 (8):659–67.
  • Majewska, M. L., K. Rola, and S. Zubek. 2017. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 27 (2):83–94.
  • Marschener, H. 1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Research 56 (1–2):203–7.
  • Martín, A. C., J. C. Del Pozo, J. Iglesias, V. Rubio, R. Solano, A. De La Peña, A. Leyva, and J. Paz‐Ares. 2000. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal 24 (5):559–67.
  • Mbodj, D., B. Effa-Effa, A. Kane, B. Manneh, P. Gantet, L. Laplaze, A. G. Diedhiou, and A. Grondin. 2018. Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8:12–26.
  • Mehra, P., B. K. Pandey, and J. Giri. 2017. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnology Journal 15 (8):1054–67.
  • Menge, J. A., D. Steirle, D. J. Bagyaraj, E. L. V. Johnson, and R. T. Leonard. 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytologist 80 (3):575–8.
  • Menzel, A., S. Hempel, S. Klotz, M. Moora, P. PYšEK, M. C. Rillig, M. Zobel, and I. KüHN. 2017. Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98 (1):92–102.
  • Mitra, D., B. Khoshru, P. K. D. Mohapatra, and P. Panneerselvam. 2020a. Beneficial interaction of Arbuscular mycorrhizal fungi in plant to improve the uptake of phosphorus. Indian Journal of Plant and Soil 7:69–72.
  • Mitra, D., B. Saritha, E. Janeeshma, P. Gusain, B. Khoshru, F. A. A. Nouh, A. Rani, A. N. Olatunbosun, J. Ruparelia, A. Rabari, et al. 2022. Arbuscular mycorrhizal fungal association boosted the arsenic resistance in crops with special responsiveness to rice plant. Environmental and Experimental Botany 193:104681.
  • Mitra, D., K. V. Rad, P. Chaudhary, J. Ruparelia, M. S. Sagarika, H. Boutaj, P. K. D. Mohapatra, and P. Panneerselvam. 2021b. Involvement of strigolactone hormone in root development, influence and interaction with mycorrhizal fungi in plant: Mini-review. Current Research in Microbial Sciences 2:100026.
  • Mitra, D., N. Uniyal, P. Panneerselvam, A. Senapati, and A. Ganeshamurthy. 2019. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal of Life Sciences and Applied Sciences 1:1–10.
  • Mitra, D., R. Djebaili, M. Pellegrini, B. Mahakur, A. Sarker, P. Chaudhary, B. Khoshru, M. D. Gallo, M. Kitouni, D. P. Barik, et al. 2021a. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition 44 (13):1993–2028.
  • Mitra, D., S. Anđelković, P. Panneerselvam, A. Senapati, T. Vasić, A. N. Ganeshamurthy, M. Chauhan, N. Uniyal, B. Mahakur, and T. K. Radha. 2020b. Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: Current perspective. Communications in Soil Science and Plant Analysis 51 (5):645–57.
  • Miyasaka, S. C., and M. Habte. 2001. Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Communications in Soil Science and Plant Analysis 32:1101–47.
  • Miyata, K., T. Kozaki, Y. Kouzai, K. Ozawa, K. Ishii, E. Asamizu, Y. Okabe, Y. Umehara, A. Miyamoto, Y. Kobae, et al. 2014. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant & Cell Physiology 55 (11):1864–72.
  • Moreira, S. D., A. C. França, P. H. Grazziotti, F. D. S. Leal, and E. D. B. Silva. 2019. Arbuscular mycorrhizal fungi and phosphorus doses on coffee growth under a non-sterile soil. Revista Caatinga 32:72–80.
  • Mori, A., T. Fukuda, P. Vejchasarn, J. Nestler, J. Pariasca-Tanaka, and M. Wissuwa. 2016. The role of root size versus root efficiency in phosphorus acquisition in rice. Journal of Experimental Botany 67 (4):1179–89.
  • Müller, L. M., and M. J. Harrison. 2019. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 50:132–9. doi: 10.1016/j.pbi.2019.05.004.
  • Muller, R., M. Morant, H. Jarmer, L. Nilsson, and T. H. Nielsen. 2007. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiology 143 (1):156–71.
  • Nacry, P., G. Canivenc, B. Muller, A. Azmi, H. Van Onckelen, M. Rossignol, and P. Doumas. 2005. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology 138 (4):2061–74.
  • Nguyen, T. D., T. R. Cavagnaro, and S. J. Watts-Williams. 2019. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: A physiological and molecular assessment. Scientific Reports 9 (1):1–13.
  • Osmont, K. S., R. Sibout, and C. S. Hardtke. 2007. Hidden branches: Developments in root system architecture. Annual Review of Plant Biology 58 (1):93–113.
  • Ouzounidou, G., V. Skiada, K. K. Papadopoulou, N. Stamatis, V. Kavvadias, E. Eleftheriadis, and F. Gaitis. 2015. Effects of soil pH and arbuscular mycorrhiza (AM) inoculation on growth and chemical composition of chia (Salvia hispanica L.) leaves. Brazilian Journal of Botany 38 (3):487–95.
  • Pagnani, G., M. Pellegrini, A. Galieni, S. D’Egidio, F. Matteucci, A. Ricci, F. Stagnari, M. Sergi, C. L. Sterzo, M. Pisante, et al. 2018. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Industrial Crops and Products 123:75–83.
  • Pandey, R., Singh, B. Nair, and T. V. R. 2005. Impact of arbuscular-mycorrhizal fungi on phosphorus efficiency of wheat, rye, and triticale. Journal of Plant Nutrition 28 (10):1867–76.
  • Panneerselvam, P., U. Kumar, T. C. K. Sugitha, C. Parameswaran, S. Sahoo, A. K. Binodh, A. Jahan, and A. Anandan. 2017. Arbuscular mycorrhizal fungi (AMF) for sustainable rice production. In Advances in soil microbiology: Recent trends and future prospects, 99–126. Singapore: Springer.
  • Park, M. R., S. H. Baek, G. Benildo, S. J. Yun and K. H Hasenstein. 2012. Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. Journal of Plant Physiology 169 (2):193–205.
  • Parniske, M. 2008. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology 6 (10):763–75.
  • Paszkowski, U., S. Kroken, C. Roux, and S. P. Briggs. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences 99 (20):13324–9.
  • Pérez-Tienda, J., A. Corrêa, C. Azcón-Aguilar, and N. Ferrol. 2014. Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry 75:1–8.
  • Pérez-Torres, C. A., J. López-Bucio, A. Cruz-Ramírez, E. Ibarra-Laclette, S. Dharmasiri, M. Estelle, and L. Herrera-Estrella. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. The Plant Cell 20 (12):3258–72.
  • Peterson, R. L., and H. B. Massicotte. 2004. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Canadian Journal of Botany 82 (8):1074–88.
  • Pieterse, C. M., A. Leon-Reyes, S. Van der Ent, and S. Van Wees. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5 (5):308–16.
  • Ping, X. U., Liang, L. Z. Xiao-Ying, D. Jing, X. U. Jiang, P. K. Ren-Fang, and S. H. E. N. 2014. Response of soil phosphorus required for maximum growth of Asparagus officinalis L. to inoculation of arbuscular mycorrhizal fungi. Pedosphere 24 (6):776–82.
  • Poirier, Y., and M. Bucher. 2002. Phosphate transport and homeostasis in Arabidopsis. In The Arabidopsis book/American Society of Plant Biologists, 1. Rockville, USA: American Society of Plant Biologists.
  • Porcel, R., R. Aroca, R. Azcon, and J. M. Ruiz-Lozano. 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na + root-to-shoot distribution. Mycorrhiza 26 (7):673–84.
  • Postma, J. A., and J. P. Lynch. 2011. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany 107 (5):829–41.
  • Purin, S., and M. C. Rillig. 2008. Parasitism of arbuscular mycorrhizal fungi: Reviewing the evidence. FEMS Microbiology Letters 279 (1):8–14.
  • Püschel, D., M. Bitterlich, J. Rydlová, and J. Jansa. 2021. Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology and Biochemistry 157:108243.
  • Raboy, V., K. A. Young, J. A. Dorsch, and A. Cook. 2001. Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology 158 (4):489–97.
  • Raghavendra, K. S., P. J. Nirmalnath, K. S. Jagadeesh, H. T. Chandranath, and S. S. Chandrasekhar. 2020. Evaluation of AMF formulations on growth, root colonization and biophysical parameters of maize (Zea mays L.). IJCS 8 (2):1394–403.
  • Ramaekers, L., R. Remans, I. M. Rao, M. W. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117 (2-3):169–76.
  • Ribot, C., Y. Wang, and Y. Poirier. 2008. Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta 227 (5):1025–36.
  • Rich, M. K., E. Nouri, P. E. Courty, and D. Reinhardt. 2017. Diet of arbuscular mycorrhizal fungi: Bread and butter? Trends in Plant Science 22 (8):652–60.
  • Riedel, T., K. Groten, and I. T. Baldwin. 2008. Symbiosis between Nicotiana attenuata and Glomus intraradices: Ethylene plays a role, jasmonic acid does not. Plant, Cell & Environment 31 (9):1203–13.
  • Rose, T. J., S. M. Impa, M. T. Rose, J. Pariasca-Tanaka, A. Mori, S. Heuer, S. E. Johnson-Beebout, and M. Wissuwa. 2013. Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Annals of Botany 112 (2):331–45.
  • Rose, T. J., T. Kretzschmar, L. Liu, G. Lancaster and M. Wissuwa. 2016. Phosphorus deficiency alters nutrient accumulation patterns and grain nutritional quality in rice. Agronomy, 6 (4):52.
  • Rouached, H., A. B. Arpat, and Y. Poirier. 2010. Regulation of phosphate starvation responses in plants: Signaling players and cross-talks. Molecular Plant 3 (2):288–99.
  • Ruan, W., M. Guo, L. Xu, X. Wang, H. Zhao, J. Wang, and K. Yi. 2018. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. The Plant Cell 30 (4):853–70.
  • Sadhana, B. 2014. Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. International Journal of Current Microbiology and Applied Sciences 3 (4):384–400.
  • Samuel, S. S., and A. Veeramani. 2021. Advantages of arbuscular mycorrhizal fungi (AMF) production for the profitability of agriculture and biofertilizer industry. In Mycorrhizal fungi-utilization in agriculture and forestry. IntechOpen.
  • Sánchez-Calderón, L., J. López-Bucio, A. Chacón-López, A. Cruz-Ramírez, F. Nieto-Jacobo, J. G. Dubrovsky, and L. Herrera-Estrella. 2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant & Cell Physiology 46 (1):174–84.
  • Sansinenea, E. 2021. Application of biofertilizers: Current worldwide status. In Biofertilizers, 183–90. Sawston, United Kingdom: Woodhead Publishing.
  • Sarkodee-Addo, E., M. Yasuda, C. Gyu Lee, M. Kanasugi, Y. Fujii, R. Ansong Omari, S. Oppong Abebrese, R. Bam, S. Asuming-Brempong, K. Mohammad Golam Dastogeer, et al. 2020. Arbuscular mycorrhizal fungi associated with rice (Oryza sativa L.) in Ghana: Effect of regional locations and soil factors on diversity and community assembly. Agronomy 10 (4):559.
  • Schouteden, N., D. De Waele, B. Panis, and C. M. Vos. 2015. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology 6:1280. doi: 10.3389/fmicb.2015.01280.
  • Schroeder, J. I., E. Delhaize, W. B. Frommer, M. L. Guerinot, M. J. Harrison, L. Herrera-Estrella, T. Horie, L. V. Kochian, R. Munns, N. K. Nishizawa, et al. 2013. Using membrane transporters to improve crops for sustainable food production. Nature 497 (7447):60–6.
  • Secco, D., A. Baumann, and Y. Poirier. 2010. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1; 2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiology 152 (3):1693–704.
  • Seo, H. M., Y. Jung, S. Song, Y. Kim, T. Kwon, D. H. Kim, S. J. Jeung, Y. B. Yi, G. Yi, M. H. Nam, et al. 2008. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnology Letters 30 (10):1833–8.
  • Sharma, S., S. Compant, M. B. Ballhausen, S. Ruppel, and P. Franken. 2020. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiological Research 240:126556. doi: 10.1016/j.micres.2020.126556.
  • Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, and F. Zhang. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology 156 (3):997–1005.
  • Shenoy, V. V., and G. M. Kalagudi. 2005. Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances 23 (7–8):501–13.
  • Shu, B., P. Wang, and R. X. Xia. 2014. Effects of mycorrhizal fungi on phytate-phosphorus utilization in trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Acta Physiologiae Plantarum 36 (4):1023–32.
  • Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. 3rd ed. New York: Academic.
  • Smith, S. E., and D. J. Read. 2010. Mycorrhizal symbiosis. Massachusetts, United States: Academic press.
  • Smith, S. E., and F. A. Smith. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227–50. doi: 10.1146/annurev-arplant-042110-103846.
  • Smith, S. E., and F. A. Smith. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104 (1):1–13.
  • Smith, S. E., F. A. Smith, and I. Jakobsen. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162 (2):511–24.
  • Smith, S. E., I. Jakobsen, M. Grønlund, and F. A. Smith. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156 (3):1050–7.
  • Smith, S. E. 2008. Mycorrhizal symbiosis, ed. D. J. Read, 787. 3rd ed. New York, London: Academic Press.
  • Soka, G., and M. Ritchie. 2014. Arbuscular mycorrhizal symbiosis and ecosystem processes: Prospects for future research in tropical soils. Open Journal of Ecology 4 (1):11–22.
  • Solaiman, M. Z., and H. Hirata. 1997. Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant and Soil 191 (1):1–12.
  • Song, Y. N., W. W. Zheng, and H. Wang. 2001. Effect of VAM and interropping of wheat with peanut on formation of root apoplastic iron pool in peanut. Scientia Agricultura Sinica 34 (5):465–8.
  • Soretire, A. A., N. O. Adeyemi, M. O. Atayese, A. A. Olubode, and A. Adewunmi. 2020. Inoculation of arbuscular mycorrhizal fungi improve soil chemical properties, growth and symbiotic N. Acta Fytotechn Zootechn 23 (4):182–91.
  • Soretire, A. A., N. O. Adeyemi, M. O. Atayese, O. S. Sakariyawo, and A. Adewunmi. 2020. Nodulation and biological nitrogen fixation in soybean (Glycine max L.) as influenced by phosphorus fertilization and arbuscular mycorrhizal inoculation. Acta Universitatis Sapientiae, Agriculture and Environment 12 (1):22–44.
  • Sperber, J. I. 1958a. Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research 9 (6):782–7.
  • Sperber, J. I. 1958b. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9 (6):778–81.
  • Steele, K. A., A. H. Price, H. E. Shashidhar, and J. R. Witcombe. 2006. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theoretical and Applied Genetics 112 (2):208–21.
  • Stürmer, S. L., and K. Kemmelmeier. 2020. The Glomeromycota in the neotropics. Frontiers in Microbiology 11:553679. doi: 10.3389/fmicb.2020.553679.
  • Sun, S., M. Gu, Y. Cao, X. Huang, X. Zhang, P. Ai, J. Zhao, X. Fan, and G. Xu. 2012. A constitutive expressed phosphate transporter, OsPht1; 1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiology 159 (4):1571–81.
  • Suwignyo, B., B. Putra, N. Umami, C. Wulandari, and R. Utomo. 2016. Effect of phosphate fertilizer and arbuscular mycorrhizal fungi on the nutrient, phosphateuptake and in vitro digestibility of alfalfa. Buletin Peternakan 40 (3):203.
  • Svistoonoff, S., A. Creff, M. Reymond, C. Sigoillot-Claude, L. Ricaud, A. Blanchet, L. Nussaume, and T. Desnos. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39 (6):792–6.
  • Syers, J. K., A. E. Johnston, and D. Curtin. 2008. Improving the efficiency of soil and fertilizer phosphorus use in. Efficiency of soil and fertilizer phosphorus use, 45–52. Rome: FAO Fertilizer and Plant Nutrition Bulletin 18, Food and Agriculture Organization of the United Nations.
  • Takeda, S., and M. Matsuoka. 2008. Genetic approaches to crop improvement: Responding to environmental and population changes. Nature Reviews Genetics 9 (6):444–57.
  • Tarafdar, J. C., and H. Marschner. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry 26 (3):387–95.
  • Thirkell, T. J., D. Pastok, and K. J. Field. 2020. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Global Change Biology 26 (3):1725–38.
  • Tirado, R., and M. Allsoapp. 2012. Phosphorus in agriculture problems and solutions greenpeace research laboratory, 1-32. Amsterdam, The Netherlands: Greenpeace International, AZ.
  • Tjellström, H., M. X. Andersson, K. E. Larsson, and A. S. Sandelius. 2008. Membrane phospholipids as a phosphate reserve: The dynamic nature of phospholipid‐to‐digalactosyl diacylglycerol exchange in higher plants. Plant, Cell & Environment 31 (10):1388–98.
  • Vallino, M., V. Fiorilli, and P. Bonfante. 2014. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant, Cell & Environment 37 (3):557–72. doi: 10.1111/pce.12177.
  • Van Kauwenbergh, S. J. 2010. World phosphate rock reserves and resources. IFDC Technical Bulletin No. 75, 58. Muscle Shoals, AL: International Fertilizer Development Center.
  • Vance, C. P., C. Uhde‐Stone, and D. L. Allan. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157 (3):423–47.
  • Vangelisti, A., L. Natali, R. Bernardi, C. Sbrana, A. Turrini, K. Hassani-Pak, D. Hughes, A. Cavallini, M. Giovannetti, and T. Giordani. 2018. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Scientific Reports 8 (1):1–14.
  • Vázquez-Santos, Y., Y. Martínez-Orea, J. Álvarez-Sánchez, N. M. Montaño, S. L. Camargo-Ricalde, and S. Castillo-Argüero. 2021. Interaction of Acaena elongata L. with arbuscular mycorrhizal fungi under phosphorus limitation conditions in a temperate forest. Phyton 90 (2):605.
  • Vejchasarn, P., J. P. Lynch, and K. M. Brown. 2016. Genetic variability in phosphorus responses of rice root phenotypes. Rice 9 (1):1–16.
  • Veneklaas, E. J., H. Lambers, J. Bragg, P. M. Finnegan, C. E. Lovelock, W. C. Plaxton, C. A. Price, W. R. Scheible, M. W. Shane, P. J. White, et al. 2012. Opportunities for improving phosphorus‐use efficiency in crop plants. New Phytologist 195 (2):306–20.
  • Venkateswarlu, B., A. V. Rao, and P. Raina. 1984. Evaluation of phosphorus solubilisation by microorganisms isolated from Aridisols. Journal of the Indian Society of Soil Science 32 (2):273–7.
  • Veronica, N., D. Subrahmanyam, T. Vishnu Kiran, P. Yugandhar, V. P. Bhadana, V. Padma, G. Jayasree, and S. R. Voleti. 2017. Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes. Photosynthetica 55 (2):285–93.
  • Vieira, M. E., Freitas, M. S. M. Peçanha, D. A. Lima, T. C. Martins, M. A. Vieira, I., and J. C. 2021. Arbuscular mycorrhizal fungi and phosphorus in spilanthol and phenolic compound yield in jambu plants. Horticultura Brasileira 39:192–8.
  • Von Braun, J., and M. S. Bos. 2005. The changing economics and politics of rice: Implications for food security, globalization, and environmental sustainability. IRRI reports, 7–20. Rice is life: scientific perspectives for the 21st century. Proceedings of the World Rice Research Conference held in Tsukuba, Japan.
  • Wang, C., S. Ying, H. Huang, K. Li, P. Wu, and H. Shou. 2009. Involvement of OsSPX1 in phosphate homeostasis in rice. The Plant Journal 57 (5):895–904.
  • Wang, C., W. Huang, Y. Ying, S. Li, D. Secco, S. Tyerman, J. Whelan, and H. Shou. 2012. Functional characterization of the rice SPX‐MFS family reveals a key role of OsSPX‐MFS1 in controlling phosphate homeostasis in leaves. New Phytologist 196 (1):139–48.
  • Wang, C., W. Yue, Y. Ying, S. Wang, D. Secco, Y. Liu, J. Whelan, S. D. Tyerman, and H. Shou. 2015. Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiology 169 (4):2822–31.
  • Wang, F., M. Deng, J. Xu, X. Zhu, and C. Mao. 2018. Molecular mechanisms of phosphate transport and signaling in higher plants. In Seminars in cell & developmental biology, Vol. 74, 114–22. Massachusetts, United States: Academic Press.
  • Wang, J., G. G. Wang, B. Zhang, Z. Yuan, Z. Fu, Y. Yuan, L. Zhu, S. Ma, and J. Zhang. 2019. Arbuscular mycorrhizal fungi associated with tree species in a planted forest of eastern China. Forests 10 (5):424.
  • Wang, X., K. Yi, Y. Tao, F. Wang, Z. Wu, D. Jiang, X. I. N. Chen, L. Zhu, and P. Wu. 2006. Cytokinin represses phosphate‐starvation response through increasing of intracellular phosphate level. Plant, Cell & Environment 29 (10):1924–35.
  • Wang, Y., W. Zhang, W. Liu, G. J. Ahammed, W. Wen, S. Guo, S. Shu, and J. Sun. 2021. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biology 21:1–12.
  • Ward, J. T., B. Lahner, E. Yakubova, D. E. Salt, and K. G. Raghothama. 2008. The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology 147 (3):1181–91.
  • Wasaki, J., T. Shinano, K. Onishi, R. Yonetani, J. Yazaki, F. Fujii, K. Shimbo, M. Ishikawa, Z. Shimatani, Y. Nagata, et al. 2006. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. Journal of Experimental Botany 57 (9):2049–59.
  • Wege, S., G. A. Khan, J. Y. Jung, E. Vogiatzaki, S. Pradervand, I. Aller, A. J. Meyer, and Y. Poirier. 2016. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal. Plant Physiology 170 (1):385–400.
  • Widada, J., D. I. Damarjaya, and S. Kabirun. 2007. The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In First international meeting on microbial phosphate solubilization, 173–7. Dordrecht: Springer.
  • Wissuwa, M., G. Gamat, and A. M. Ismail. 2005. Is root growth under phosphorus deficiency affected by source or sink limitations? Journal of Experimental Botany 56 (417):1943–50.
  • Wu, Q. S. ed. 2017. Arbuscular mycorrhizas and stress tolerance of plants. Singapore: Springer.
  • Xiaoxia, A., J. Liu, X. Liu, C. Ma, and Q. Zhang. 2021. Optimizing Phosphorus Application Rate and the Mixed Inoculation of Arbuscular Mycorrhizal Fungi and Phosphate-solubilizing Bacteria Can Improve the Phosphatase Activity and Organic Acid Content in Alfalfa Soil. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-892549/v1.
  • Yamaji, N., Y. Takemoto, T. Miyaji, N. Mitani-Ueno, K. T. Yoshida, and J. F. Ma. 2017. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541 (7635):92–5.
  • Yang, S. Y., and U. Paszkowski. 2011. Phosphate import at the arbuscule: Just a nutrient? Molecular Plant-Microbe Interactions 24 (11):1296–9.
  • Yang, S. Y., M. Grønlund, I. Jakobsen, M. S. Grotemeyer, D. Rentsch, A. Miyao, H. Hirochika, C. S. Kumar, V. Sundaresan, N. Salamin, et al. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. The Plant Cell 24 (10):4236–51.
  • Ye, Y., J. Yuan, X. Chang, M. Yang, L. Zhang, K. Lu, and X. Lian. 2015. The phosphate transporter gene OsPht1; 4 is involved in phosphate homeostasis in rice. PLoS One 10 (5):e0126186.
  • Yi, K., Z. Wu, J. Zhou, L. Du, L. Guo, Y. Wu, and P. Wu. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology 138 (4):2087–96.
  • Yoneyama, K., X. Xie, D. Kusumoto, H. Sekimoto, Y. Sugimoto, Y. Takeuchi, and K. Yoneyama. 2007. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227 (1):125–32.
  • Zahra, Z., N. Waseem, R. Zahra, H. Lee, M. A. Badshah, A. Mehmood, H. K. Choi and M. Arshad. 2017. Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. Journal of Agricultural and Food Chemistry 65 (28):5598–5606.
  • Zhang, F., and L. Li. 2003. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil 248 (1):305–12.
  • Zhang, F., Y. Sun, W. Pei, A. Jain, R. Sun, Y. Cao, X. Wu, T. Jiang, L. Zhang, X. Fan, et al. 2015. Involvement of O s P ht1; 4 in phosphate acquisition and mobilization facilitates embryo development in rice. The Plant Journal 82 (4):556–69.
  • Zhang, L., N. Shi, J. Fan, F. Wang, T. S. George, and G. Feng. 2018. Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environmental Microbiology 20 (7):2639–51. doi: 10.1111/1462-2920.14289.
  • Zhang, S., L. Wang, F. Ma, K. J. Bloomfield, J. Yang, and O. K. Atkin. 2015. Is resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi? Journal of Plant Ecology 8 (4):436–48. doi: 10.1093/jpe/rtu025.
  • Zhang, S., L. Wang, F. Ma, X. Zhang, and D. Fu. 2016. Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields. Ecological Engineering 95:64–72. doi: 10.1016/j.ecoleng.2016.06.029.
  • Zhang, Y. C., Y. N. Zou, L. P. Liu, and Q. S. Wu. 2019. Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). Journal of Integrative Plant Biology 61 (10):1099–111. doi: 10.1111/jipb.12743.
  • Zhao, H., T. Frank, Y. Tan, C. Zhou, M. Jabnoune, A. B. Arpat, H. Cui, J. Huang, Z. He, Y. Poirier, et al. 2016. Disruption of Os SULTR 3; 3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. The New Phytologist 211 (3):926–39. doi: 10.1111/nph.13969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.