513
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Impact of mycorrhiza on plant nutrition and food security

, ORCID Icon &
Pages 3247-3272 | Received 22 Feb 2022, Accepted 20 Feb 2023, Published online: 20 Apr 2023

References

  • A. M. Qaisi., A. R. Al Tawaha, Imran, and M. D Al-Rifaee. 2022. Effects of chitosan and Biochar-Mended soil on growth, yield and yield components and mineral composition of Fenugreek. Gesunde Pflanzen 10.1007/s10343-022-00727-x
  • Aguégué, M. R., Ahoyo Adjovi, N. R. Agbodjato, N. A. Noumavo, P. A. Assogba, S. Salami, H. Salako, V. K. Ramón, R. Baba-Moussa, F., and A. A. Adjanohoun 2021. Efficacy of native strains of arbuscular mycorrhizal fungi on maize productivity on ferralitic soil in Benin. Agricultural Research :1–15.
  • Akpınar, Ç Demirbaş A., and İ. Ortaş. 2020. The effects of different mycorrhiza species, compost and rock phosphate applications on the growth of sorghum plant. Turkish Journal of Agriculture-Food Science and Technology 8:2583–9.
  • Ali I., S. Ullah, Imran, and Z. Guo. 2022. Changes in soil properties and microbial communities with biochar amendment in combination with nitrogen fertilizer in a paddy field. Frontiers Microbiology. doi: 10.3389/fmicb.2022.834751.
  • Ali, I., S. Ullah, A. Iqbal, Z. Quan, H. Liang, S. Ahmad, I. Muhammad, Z. Guo, S. Wei, L. Jiang, et al. 2021. Combined application of biochar and nitrogen fertilizer promotes the activity of starch metabolism enzymes and the expression of related genes in rice in a dual cropping system. BMC Plant Biology 21 (1):600. doi: 10.1186/s12870-021-03384-w.
  • Amanullah, M. Y., S. Khalid, M. S. Elshikh, H. M. Akram, Imran, A. R. M. Tawaha, M. Ahmad, Saifullah, I. Ali, S. Fahad, M. Adnan, A. Ali et al. 2021a. Phenology, Growth, Productivity and profitability of mungbean as affected by potassium and organic matter under water stress vs no water stress condition. Journal of Plant Nutrition doi: 10.1080/01904167.2021.1936025.
  • Amanullah, S., Khalid, A. Muhammad, H. M. Akram, Imran, A. R. M. Al-Tawaha, S. Ullah, I. Ali, S. Fahad, M. Adnan, Nadia, F. A. K. Hayat, et al. 2021b. Integrated use of biofertlizers with organic and inorganic phosphorus sources improve dry matter partitioning and yield in hybrid maize. Communications in Soil Science and Plant Analysis doi: 10.1080/00103624.2021.1956520.
  • Amanullah, S., Khalid, F. Khalil, M. S. Elshikh, M. S. Alwahibi, J. Alkahtani, and Imranuddin, Imran. 2021c. Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes. Scientific Reports doi: 10.1038/s41598-021-92022-4.
  • Amir, H., S. Gensous, Y. Cavaloc, and L. Wantiez. 2021. Phosphorus fertilization of an ultramafic soil reduced effects of arbuscular mycorrhizal fungi but not mycorrhizal colonization. Journal of Soil Science and Plant nutrition:1–11.
  • Anli, M., S. Symanczik, A. El Abbassi, M. Ait-El-Mokhtar, A. Boutasknit, R. Ben-Laouane, S. Toubali, M. Baslam, P. Mäder, and M. Hafidi. 2021. Use of arbuscular mycorrhizal fungus Rhizoglomus irregulare and compost to improve growth and physiological responses of Phoenix dactylifera ‘Boufgouss. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology 155:763–71.
  • Arruda, B., W. F. B. Herrera, J. C. Rojas-García, C. Turner, and P. S. Pavinato. 2021. Cover crop species and mycorrhizal colonization on soil phosphorus dynamics. Rhizosphere 19:100396.
  • Atteya, A. K., R. Sami, A. A. Al-Mushhin, K. A. Ismail, and E. A. Genaidy. 2021. Response of seeds, oil yield and fatty acids percentage of Jojoba Shrub strain EAI to mycorrhizal fungi and moringa leaves extract. Horticulturae 7:395.
  • Bastami, A., R. Amirnia, R. Sayyed, and H. A. E. Enshasy. 2021. The effect of mycorrhizal fungi and organic fertilizers on quantitative and qualitative traits of two important satureja species. Agronomy 11:1285.
  • Bencherif, K., Laruelle, F. Dalpé, Y. L.-H, and Sahraoui, A. 2021. Inoculum sources modulate mycorrhizal inoculation effect on Tamarix articulata development and its associated rhizosphere microbiota. Plants 10:2716.
  • Bhantana, P., M. S. Rana, X-c Sun, M. G. Moussa, M. H. Saleem, M. Syaifudin, A. Shah, A. Poudel, A. B. Pun, and M. A. Bhat. 2021. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 84:19–37.
  • Castañeda‐Gómez, L., J. R. Powell, D. S. Ellsworth, E. Pendall, and Y. Carrillo. 2021. The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low‐phosphorus Eucalyptus forest under elevated CO2. Functional Ecology 35:2056–71.
  • Çekiç, F. Ö., S. Ünyayar, and İ. Ortaş. 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany 36:63–72.
  • Celik, I., I. Ortas, and S. Kilic. 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research 78:59–67.
  • Cheng, H.-Q., B. Giri, Q.-S. Wu, Y.-N. Zou, and K. Kuča. 2021. Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Archives of Agronomy and Soil Science :1–12.
  • Chu, Q., L. Zhang, J. Zhou, Y. Lixing, C. Fanjun, Z. Fusuo, F. Gu, and R. Zed. 2020. Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant and Soil 449:357–71.
  • Demirbaş, A., Z. Kaya, Ç. Akpınar, and İ. Ortaş. 2019. The effects of applications of fertigation and mycorrhiza on yield and nutrient uptake of pepper plant (Capsicum annum L.) under field conditions. Turkish Journal of Agriculture-Food Science and Technology 7:152–61.
  • Deveautour, C., S. Donn, A. E. Bennett, S. Power, and J. R. Powell. 2021. Variability of arbuscular mycorrhizal fungal communities within the root systems of individual plants is high and influenced by host species and root phosphorus. Pedobiologia 84:150691.
  • Ding, W., Q. Meng, G. Dong, N. Qi, H. Zhao, … S. Shi. 2022. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnology Journal : E 2100579. doi: 10.1002/biot.202100579.
  • Gujre, N., Soni, A. Rangan, L. Tsang, D. C., and S., Mitra 2021. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution 268:115549.
  • Gull, M., Hafeez, F. Saleem, M., and K., Malik 2004. Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Australian Journal of Experimental Agriculture 44:623–8.
  • Gupta, S., S. D. Thokchom, and R. Kapoor. 2021. Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Frontiers in Plant Science 12:334.
  • He, Y., R. Yang, G. Lei, M. Li, T. Li, F. Zhan, and Y. Li. 2021. Arbuscular mycorrhizal fungus–induced decrease in phosphorus loss due to leaching in red soils under simulated heavy rainfall. Journal of Soils and Sediments 21:881–9.
  • Hou, L., X. Zhang, G. Feng, Z. Li, Y. Zhang, and N. Cao. 2021. Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China. Scientific Reports 11:1–11.
  • Hussain, S., M. Sharif, and W. Ahmad. 2021. Selection of efficient phosphorus solubilizing bacteria strains and mycorrhizea for enhanced cereal growth, root microbe status and N and P uptake in alkaline calcareous soil. Soil Science and Plant Nutrition 1–10.
  • Ilyas M., G. Ayub, Imran, A. A. Awan, and M. Ahmad, 2020. Calcium and boron effect on production and quality of autumn potato under chilling temperature. Communication in Soil Science and Plant Analysis doi: 10.1080/00103624.2020.1854286.
  • Imran and Amanullah. 2021a. Assessment of chemical and manual weed control approaches for effective weed suppression and maize productivity enhancement under maize-wheat cropping system. Gesunde Pflanzen doi: 10.1007/s10343-021-00599-7.
  • Imran and Amanullah. 2021b. Phosphorus and boron application optimizing biofortification of phosphorus and productivity of French bean (Phaseolus Vulgaris L.). Communication in Soil Science and Plant Analysis. doi: 10.1080/00103624.2021.1971689.
  • Imran and Amanullah. 2021c. Phosphorus biofortification and uptake in maize enhanced with integrated phosphorus management. Phosphorus, Sulfur, and Silicon and the Related Elements doi: 10.1080/10426507.2021.2022677.
  • Imran. 2021. The bioavailability of Phosphorus in composite vs. hybrid maize differ with phosphorus and boron fertilization. Phosphorus, Sulfur, and Silicon and the Related Elements doi: 10.1080/10426507.2021.1920588.
  • Imran. 2022a. Phosphorus availability enhanced with combine application of organic amendments and beneficial microbes under soybean-wheat cropping system. Communication in Soil Science and Plant Analysis. (Review doi: 10.1080/00103624.2022.2034848.
  • Imran. 2022b. Growing of off-season tomato in high tunnel and its nutritional value augmentation with integrated nutrients management. Journal of Plant Nutrition doi: 10.1080/01904167.2022.2046062.
  • Imran. 2022c. Management of abiotic stresses with nano-black carbon is a tool for crop production. Journal of Plant Nutrition. doi: 10.1080/01904167.2022.2046085.
  • Imran, A., and A. R. M. Al Tawaha. 2021b. Management of nano-black carbon, phosphorous and bio fertilizer improve soil organic carbon and ensilage biomass of soybean and maize. Communication in Soil Science and Plant Analysis. doi: 10.1080/00103624.2021.1966439.
  • Imran and Amanullah. 2022a. Soybean quality and profitability improved with peach (Prunus persica L) remnants, phosphorus and beneficial microbes. Journal of Plant Nutrition doi: 10.1080/01904167.2022.2068438.
  • Imran and Amanullah. 2022b. Integration of peach (Prunus persica L) remnants in combination with beneficial microbes and phosphorus differ phosphorus use efficiency, agronomic efficiency and partial factor productivity in soybean vs maize crops. Journal of Plant Nutrition doi: 10.1080/01904167.2022.2099890.
  • Imran, Amanullah., and A. R. Al Tawaha. 2022a. Humic acid and sulfur integration enhances growth and yield related traits of Brassica Napus L. Journal of Plant Nutrition doi: 10.1080/01904167.2022.2128820.
  • Imran, Amanullah., and A. R. Al Tawaha. 2022b. Indigenous organic resources utilization, application methods and sowing time replenish soil nitrogen and increase maize yield and total dry biomass. Journal of Plant Nutrition doi: 10.1080/01904167.2022.2067055.
  • Imran, Amanullah., and A. R. Al Tawaha. 2022c. Regenerating potential of dual purpose rapeseed (Brassica napus L.) as influenced by decapitation stress and variable rates of phosphorous. Communication in Soil Science and Plant Analysis doi: 10.1080/00103624.2022.2118297
  • Imran, Amanullah, A. Ali Khan, T. Mahmood, A. R. Al Tawaha, and S. Khanum. 2021c. Adequate fertilization, application method and sowing techniques improve maize yield and related traits. Communication in Soil Science and Plant Analysis doi: 10.1080/00103624.2021.1925688.
  • Imran, Amanullah., and A. R. Al-Tawaha. 2020a. The Productivity of subsequent wheat enhanced with residual carbon sources and phosphorus under improved irrigation system. Communication in Soil Science and Plant Analysis doi: 10.1080/00103624.2020.1763387.
  • Imran, Amanullah., and A. R. Al-Tawaha. 2021a. Carbon sources application increase wheat yield and soil fertility. Communication in Soil Science and Plant Analysis doi: 10.1080/00103624.2020.1865397.
  • Imran, Amanullah,., M. Arif, Z. Shah, and A. Bari. 2020b. Soil application of Trichoderma and Peach (Prunus persica L.) residues possesses biocontrol potential for weeds and enhances growth and profitability of soybean (Glycine max). Sarhad Journal of Agriculture 36 (1):10–20. DOI| doi: 10.17582/journal.sja/2020/36.1.10.20.
  • Imran, Amanullah., and I. Ortash. 2022d. Agronomic practices improved cucumber productivity, nutrients uptake and quality. Gesunde Pflanzen./italic> doi: 10.1007/s10343-022-00634-1.
  • Imran, A., and A. Rehman Altawaha. 2022c. Carbon assimilation and dry matter partitioning in soybean ameliorates with the integration of nano-black carbon, along with beneficial microbes and phosphorus fertilization. Journal of Plant Nutrition doi: 10.1080/01904167.2022.2035753.
  • Jabborova, D., K. Annapurna, S. Paul, S. Kumar, H. A. Saad, S. Desouky, M. F. Ibrahim, and A. Elkelish. 2021. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. Journal of Fungi 7:571.
  • Jansa, J., A. Mozafar, G. Kuhn, T. Anken, R. Ruh, I. Sanders, and E. Frossard. 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications 13:1164–76.
  • Jiang, F., L. Zhang, J. Zhou, T. S. George, and G. Feng. 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. The New Phytologist 230 (1):304–15. doi: 10.1111/nph.17081.
  • Kuyper, T. W., X. Wang, and M. N. Muchane. 2021. The interplay between roots and arbuscular mycorrhizal fungi influencing water and nutrient acquisition and use efficiency. The Root Systems in Sustainable Agricultural Intensification, 193–220.
  • Li, J., L. S. Charles, Z. Yang, G. Du, and S. Fu. 2022. Differential mechanisms drive species loss under artificial shade and fertilization in the alpine meadow of the Tibetan plateau. Frontiers in Plant Science doi: 10.3389/fpls.2022.832473.
  • Li, Y., F. Erhunmwunsee, M. Liu, K. Yang, W. Zheng, … J. Tian. 2022. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry 382:132312. doi: 10.1016/j.foodchem.2022.132312.
  • Liu, M., Y. Shen, Q. Li, W. Xiao, and X. Song. 2021a. Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C: N: P stoichiometry in chinese fir (Cunninghamia lanceolata) forests. Plant and Soil 461:421–40.
  • Liu, Z., H. Ying, M. Chen, J. Bai, Y. Xue, Y. Yin, … Z. Dou. 2021. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food 2 (6):426–33. doi: 10.1038/s43016-021-00300-1.
  • Liu, Y., Zhang, G. Luo, X. Hou, E. Zheng, M. Zhang, L. He, X. Shen, W., and D. Wen 2021b. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession. Soil Biology and Biochemistry 153:108099.
  • Lourdes, G.-C M., D. Stéphane, and C.-S. Maryline. 2021. Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium uptake of maize plants associated to the mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Heliyon 7:e05891.
  • Lu, L., X. Zhai, X. Li, S. Wang, L. Zhang, L. Wang, X. Jin, L. Liang, Z. Deng, Z. Li, et al. 2022. Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains. Nature Communications 13 (1):4672. doi: 10.1038/s41467-022-32364-3.
  • Ma, X., X. Li, and U. Ludewig. 2021. Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Annals of Botany 127:155–66.
  • Maitra, P., Y. Zheng, Y.-L. Wang, D. Mandal, P.-P. Lü, C. Gao, B. J. Babalola, N.-N. Ji, X.-C. Li, and L.-D. Guo. 2021. Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest. Biology and Fertility of Soils 57:685–97.
  • Martínez-Viveros, O., M. Jorquera, D. Crowley, G. Gajardo, and M. Mora. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition 10:293–319.
  • Metwally, R. A., S. A. Soliman, A. A. H. A. Latef, and R. E. Abdelhameed. 2021. The Individual and interactive role of arbuscular mycorrhizal fungi and Trichoderma viride on growth, protein content, amino acids fractionation, and phosphatases enzyme activities of onion plants amended with fish waste. Ecotoxicology and Environmental Safety 214:112072.
  • Nouri, E., R. Surve, L. Bapaume, M. Stumpe, M. Chen, Y. Zhang, C. Ruyter-Spira, H. Bouwmeester, G. Glauser, and S. Bruisson. 2021. Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signalling. Plant and Cell Physiology 62 (2): 959–70
  • Ortas, I. 2019. Under filed conditions, mycorrhizal inoculum effectiveness depends on plant species and phosphorus nutrition. Journal of Plant Nutrition 42:2349–62.
  • Ortaş, I., and M. Rafique. 2017. The mechanisms of nutrient uptake by arbuscular mycorrhizae. In Mycorrhiza-nutrient uptake, biocontrol, ecorestoration, 1–19. Berlin: Springer.
  • Ortaş, I., M. Rafique, and İ. A. Ahmed. 2017. Application of arbuscular mycorrhizal fungi into agriculture. In Arbuscular mycorrhizas and stress tolerance of plants, 305–27. Berlin: Springer.
  • Ortas, İ., M. Rafique, C. Akpinar, and Y. A. Kacar. 2017. Growth media and mycorrhizal species effect on acclimatization and nutrient uptake of banana plantlets. Scientia Horticulturae 217:55–60.
  • Ortas, I., Sari, N. Akpinar, Ç., and H. Yetisir 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae 128:92–8.
  • Palacios, Y. M., R. Gleadow, C. Davidson, W. Gan, and B. Winfrey. 2021. Do mycorrhizae increase plant growth and pollutant removal in stormwater biofilters? Water Research 202:117381. doi: 10.1016/j.watres.2021.117381.
  • Pan, C., K. Yang, F. Erhunmwunsee, Y.-X. Li, M. Liu, S. Pan, D. Yang, G. Lu, D. Ma, and J. Tian. 2023. Inhibitory effect of cinnamaldehyde on Fusarium solani and its application in postharvest preservation of sweet potato. Food Chemistry 408:135213. doi: 10.1016/j.foodchem.2022.135213.
  • Poveda, J., R. Hermosa, E. Monte, and C. Nicolás. 2019. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports 9:1–11.
  • Qu, L., M. Wang, and A. Biere. 2021. Interactive effects of mycorrhizae, soil phosphorus. And light on growth and induction and priming of defense in plantago lanceolata. Frontiers in Plant Science 12.
  • Quan, L., J. Zhang, Q. Wei, Y. Wang, C. Qin, F. Hu, Y. Chen, Z. Shen, and Y. Xia. 2021. Promotion of zinc tolerance, acquisition and translocation of phosphorus in Mimosa pudica L. mediated by arbuscular mycorrhizal fungi. Bulletin of Environmental Contamination and Toxicology 106:507–15.
  • Rafique, M., I. Ortas, M. Rizwan, T. Sultan, H. J. Chaudhary, M. Işik, and O. Aydin. 2019. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research International 26 (20):20689–700. doi: 10.1007/s11356-019-05323-7.
  • Riaz, M., M. Kamran, Y. Fang, Q. Wang, H. Cao, G. Yang, L. Deng, Y. Wang, Y. Zhou, and I. Anastopoulos. 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials 402:123919.
  • Rodrigues, M. Â., Piroli, L. B. Forcelini, D. Raimundo, S. da Silva Domingues, L. Cassol, L. C. Correia, C. M., and M. Arrobas 2021. Use of commercial mycorrhizal fungi in stress-free growing conditions of potted olive cuttings. Scientia Horticulturae 275:109712.
  • Roy-Bolduc, A., and M. Hijri. 2011. The use of mycorrhizae to enhance phosphorus uptake: A way out the phosphorus crisis. J. Biofertil. Biopestici 2:1–5.
  • Saboor, A., M. A. Ali, S. Hussain, H. A. El Enshasy, S. Hussain, N. Ahmed, A. Gafur, R. Sayyed, S. Fahad, and S. Danish. 2021. Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences 28:6339–51.
  • Sagar, A., P. Rathore, P. W. Ramteke, W. Ramakrishna, M. S. Reddy, and L. Pecoraro. 2021. Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms 9:1491.
  • Sorensen, J., J. Larsen, and I. Jakobsen. 2008. Pre-inoculation with arbuscular mycorrhizal fungi increases early nutrient concentration and growth of field-grown leeks under high productivity conditions. Plant and Soil 307:135–47.
  • Sun, J., Q. Jia, Y. Li, T. Zhang, J. Chen, Y. Ren, … S. Fu. 2022. Effects of arbuscular mycorrhizal fungi and biochar on growth, nutrient absorption, and physiological properties of Maize (Zea mays L.). Journal of Fungi 8 (12) doi: 10.3390/jof8121275.
  • Tran, B. T., T. R. Cavagnaro, N. Jewell, C. Brien, B. Berger, and S. J. Watts‐Williams. 2021. High‐throughput phenotyping reveals growth of Medicago truncatula is positively affected by arbuscular mycorrhizal fungi even at high soil phosphorus availability. Plants, People, Planet 3:600–13.
  • Turan, V. 2021. Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiologia Plantarum 173 (1):418–29. doi: 10.1111/ppl.13490.
  • Van’t Padje, A., P. Bonfante, L. T. Ciampi, and E. T. Kiers. 2021a. Quantifying nutrient trade in the arbuscular mycorrhizal symbiosis under extreme weather events using quantum-dot tagged phosphorus. Frontiers in Ecology and Evolution 9:153.
  • Van’t Padje, A., L. O. Galvez, M. Klein, M. A. Hink, M. Postma, T. Shimizu, and E. T. Kiers. 2021b. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. The ISME Journal 15:435–49.
  • Vosnjak, M., M. Likar, and G. Osterc. 2021. The effect of mycorrhizal inoculum and phosphorus treatment on growth and flowering of Ajania (Ajania pacifica (Nakai) Bremer et Humphries). Plant. Horticulturae 7:178.
  • Wang, F., and G. Feng. 2021. Arbuscular mycorrhizal fungi interactions in the rhizosphere. In Rhizosphere biology: interactions between microbes and plants, 217–35. Berlin: Springer.
  • Wang, F., K. Li, and Z. Shi. 2021a. Phosphorus fertilization and mycorrhizal colonization change silver nanoparticle impacts on maize. Ecotoxicology 30:118–29.
  • Wang, Y., S. Liu, X. Yang, J. Zhang, Y. Zhang, X. Liu, … H. Wang. 2022. Effect of germination on nutritional properties and quality attributes of glutinous rice flour and dumplings. Journal of Food Composition and Analysis 108:104440. doi: 10.1016/j.jfca.2022.104440.
  • Wang, G., L. Wang, F. Ma, D. Yang, and Y. You. 2021b. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution 272:115980.
  • Wu, Y.-H., Wang, H. Liu, M. Li, B. Chen, X. Ma, Y.-T., and Z.-Y. Yan 2021. Effects of native arbuscular mycorrhizae isolated on root biomass and secondary metabolites of Salvia miltiorrhiza Bge. Frontiers in Plant Science 12:66.
  • Xie, Q., G. Liu, Y. Zhang, J. Yu, Y. Wang, … X. Ma. 2022. Active edible films with plant extracts: A updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Critical Reviews in Food Science and Nutrition 1–23. doi: 10.1080/10408398.2022.2092058.
  • Yadav, R., P. Ror, P. Rathore, S. Kumar, and W. Ramakrishna. 2021. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. Journal of Applied Microbiology 131:339–59.
  • Yang, Y., Y. Dou, B. Wang, Z. Xue, Y. Wang, S. An, … S. X. Chang. 2022. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta doi: 10.1002/imt2.66.
  • Yang, K., Q. Geng, Y. Luo, R. Xie, T. Sun, Z. Wang, L. Qin, W. Zhao, M. Liu, Y. Li, et al. 2022. Dysfunction of FadA-cAMP signalling decreases Aspergillus flavus resistance to antimicrobial natural preservative Perillaldehyde and AFB1 biosynthesis. Environmental Microbiology 24 (3):1590–607. doi: 10.1111/1462-2920.15940.
  • Yazici, M. A., M. Asif, Y. Tutus, I. Ortas, L. Ozturk, H. Lambers, and I. Cakmak. 2021. Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant and Soil :1–17.
  • Zare, M., A. Ganjeali, and M. Lahouti. 2021. Rosmarinic and caffeic acids contents in Basil (Ocimum basilicum L.) are altered by different levels of phosphorus and mycorrhiza inoculation under drought stress. Acta Physiologiae Plantarum 43:1–10.
  • Zhang, L., Q. Chu, J. Zhou, Z. Rengel, and G. Feng. 2021. Soil phosphorus availability determines the preference for direct or mycorrhizal phosphorus uptake pathway in maize. Geoderma 403:115261.
  • Zhang, Y., S. Zhang, X. Yang, W. Wang, X. Liu, H. Wang, … H. Zhang. 2022. Enhancing the fermentation performance of frozen dough by ultrasonication: Effect of starch hierarchical structures. Journal of Cereal Science 106:103500. doi: 10.1016/j.jcs.2022.103500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.